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Abstract

A design tool for aerodynamic shape optimization is developed by coupling a

CFD solver and a gradient-based optimization package. The aerodynamic solver is

a parallel viscous Navier-Stokes solver with a Spallart-Allmaras one-equation tur-

bulence model to account for turbulence. The optimization package contains three

optimization algorithms: the modified method of feasible directions, sequential linear

programming and sequential quadratic programming. The developed tool is used to

obtain minimum drag airfoils subject to a minimum lift requirement. The results

show a 20% reduction in drag with respect to the initial airfoil. The same opti-

mization problem is solved using the three optimization algorithms. The sequential

quadratic programming algorithm is found to outperform the other two algorithms,

even though they all converge to a similar solution. Finally, the developed design tool

is used for the preliminary design of a set of airfoils for an airfoil aircraft.
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Chapter 1

Introduction

In the past, the design process for engineering systems such as aircraft was a trial-

and-error process based on the experience of the designers. As designed systems

have become more complex, the trial-and-error process has become an expensive and

tedious task. To aid in the design of complex engineering systems, new design methods

are necessary that rely on numerical tools to select the most efficient parameters for

a desired design.

In the last two decades, increases in computing power, and new advances in the ar-

eas of computational fluid dynamics (CFD) and computational structural dynamics

(CSD) have allowed engineers to model and analyze complex systems in a reason-

able amount of computational time. Numerical methods for optimization have also

emerged that are able to optimize a certain performance index with respect to a

specified set of parameters. As a result of these advances it is now possible to couple

an analysis tool, such as CFD and CSD, with a numerical optimization technique in

order to obtain engineering design tools for optimal design.

In this thesis, a numerical optimization technique is coupled with a CFD solver
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to develop a design tool for aerodynamic shape optimization. The motivation of the

thesis is described in detail in the next section. The most recent advances in the areas

of numerical optimization and aerodynamic shape optimization are then reviewed in

sections 1.2.1 and 1.2.2. The scope of the thesis is presented in section 1.3. Finally,

a description of the forthcoming chapters is presented in 1.4.

1.1 Motivation

The demand for surveillance unmanned aerial vehicles (UAVs) during the last few

years has increased the amount of research being done in the development of efficient

low Reynolds number airfoils, since most UAVs fly at a Reynolds number in the range

of 100, 000 to 1, 000, 000 [1]. In the past two decades, airfoil shape optimization using

CFD codes has been applied to transonic airfoils and wings [2, 3]. However, shape

optimization using CFD has seldom been applied to airfoils at low Reynolds num-

bers because of the complexity of the fluid flow at low Reynolds numbers [4]. Low

Reynolds number airfoils have different aerodynamic characteristics than transonic

and supersonic airfoils because the viscous forces have a larger impact on the aero-

dynamics of the airfoils. Therefore, in order to accurately predict the aerodynamic

characteristics, an aerodynamic solver that takes into account the viscosity of the

fluid is necessary in order to properly predict the aerodynamic characteristics of such

airfoils. In this thesis, a fully viscous solver is used to compute the aerodynamic

characteristics so that aerodynamic shape optimization can be performed at this low

Reynolds number.

Surveillance UAVs have a large flight envelope. They are expected to: fly at

high speeds in order to arrive at the surveillance area in the shortest amount of

time possible, fly at low speed in the surveillance area and, takeoff and land within
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the minimum amount of space possible. These requirements are difficult to meet

efficiently with a conventional single airfoil configuration, and it is necessary to achieve

a compromise between the different stages of flight. A possible solution to increase

the efficiency of UAVs in all stages of flight is to develop an aircraft with a morphing

airfoil. The morphing airfoil would be able to adapt its shape to the various mission

requirements [5, 6]. To achieve this goal, a design tool must be developed to obtain

optimal airfoils for each of the different stages of flight, so that the systems to deform

the airfoil and a prototype aircraft can be designed and tested.

In the area of aerodynamic shape optimization, research has centered on reducing

the amount of computational time needed to evaluate the functions and gradients for

optimization. This is because the evaluation of aerodynamic objective function and

constraints involves the solution of a set of partial differential equations (PDE) and

therefore, it is the most time consuming task during the optimization process. Usually

an optimization method is chosen a priori, and all the results are reported using this

algorithm. A good selection of the optimization algorithm can reduce the amount

of iterations necessary to obtain the optimum and, thereby, reducing the number of

function and gradient evaluations and as a result reducing the computational time.

However, the study of different optimizaiton algorithms used to solve aerodynamic

shape optimization problems has not received the necessary attention. Only in [7]

is an aerodynamic shape optimization problem solved using genetic algorithms and

quasi-Newton method and the performance is compared. It is not known by the

author that rates of convergence of different first-order optimization methods have

been compared when solving an aerodynamic shape optimization problem using an

accurate CFD analysis. The comparison of several first-order optimization methods

is problem dependent and has yielded interesting results when applied to structural

optimization [8]. This issue will also be addressed in this thesis.
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Finally, aerodynamic shape optimization is an essential part of a multidisciplinary

design optimization (MDO) tool for aerospace applications [9]. The development of

an aerodynamic shape optimization tool in this thesis is an important step toward

the understanding and development of an MDO application for aircraft design. This

thesis has provided the necessary background for a future PhD thesis in MDO, which

will involve the coupled optimization of aerodynamics and structures to obtain more

realistic results.

1.2 Background

1.2.1 Optimization Theory

Advances in digital computer technology during the early fifties led to an incredible

advance in the area of numerical methods for optimization. Since then, active research

has produced a variety of methods for unconstrained and constrained optimization

[10–12].

Engineering applications for optimization usually involve solving a nonlinear con-

strained optimization problem. Nonlinear constrained optimization problems involve

the search for a minimum of a nonlinear objective function subject to a set of non-

linear constraints, and it is common for this optimization problem to have multiple

extrema. Due to this difficulty, two different approaches have emerged in the area of

nonlinear constraint optimization: local methods and global methods. Local meth-

ods aim to obtain a local minimum, and they cannot guarantee that the minimum

obtained is the absolute minimum. These methods are usually first-order methods,

i.e. they require information about the gradient of the objective function and the

constraints. On the other hand, global methods aim to obtain the absolute minimum
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of the function. They do not need any information about the gradient, and they are

mostly based on stochastic procedures.

Local constrained methods can be classified into sequential methods and transformation-

based methods. Sequential methods aim to solve the nonlinear constrained problem

by iteratively solving a more simple constrained optimization problem. The most com-

monly used local sequential methods are: the method of feasible directions (MFD)

and modified method of feasible directions (MMFD) [10,13,14], sequential linear pro-

gramming (SLP) [10, 13, 15], sequential quadratic programming (SQP) [11, 16], and

response surface approximation methods (RSM) [17,18].

The MMFD is based on obtaining a sequence of feasible directions, i.e. directions

that reduce the objective function and satisfy the constraints. Then, the design is

moved in these directions until convergence to the optimum is achieved. The main

drawback of this method is that it performs poorly if the constraints are highly non-

linear or discontinuous. The SLP method solves iteratively a linear programming

subproblem obtained by linearizing the objective function and the constraints. Be-

cause linear approximations are only valid in the neighborhood of the linearization

point, the norm of the search vector used to improve the design needs to be con-

strained. This constraint is achieved by imposing limits to the maximum allowable

change on the design variables. These limits are known as move limits. The main

drawback of SLP methods is the choice of the move limits; if the move limits are large,

the method leads to oscillations on the convergence and it may not converge. On the

other hand, if the move limits are too small, the SLP presents a low convergence rate.

The main advantages of SLP methods are: they are simple to implement because

they only involve the solution of a linear programming problem (LP) and, they are

proved to yield good results if the move limits are properly adjusted [19]. Similarly,

SQP methods are based on a second-order approximation of the objective function
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and a linearization of the constraints [10] or on a second-order approximation of the

Lagrangian of the original problem [11]. SQP methods are robust, have a fast conver-

gence rate and are the most frequently used local nonlinear constrained optimization

method. Finally, response surface approximation methods use interpolation models

to model the objective function and constraints of the original problem. The interpo-

lation model, usually a quadratic model, is then used to optimize the problem. The

problem is solved iteratively and the approximation model is updated with the last

solution.

Local transformation-based methods transform the original nonlinear optimization

problem into an unconstrained optimization problem by adding a penalty function

to the objective function. When the constraints are not satisfied, the penalty func-

tion increases its value thereby increasing the value of the objective function. Once

the constrained problem has been transformed into an unconstrained problem, any

unconstrained optimization algorithm can be used to solve the transformed prob-

lem. For example, a Quasi-Newton method or a conjugate-gradient method can be

used [10, 11, 13, 14]. The most commonly used local transformation-based methods

are: penalty methods [10, 13] and augmented Lagrangian methods [10, 13, 14]. The

former eliminates the constraints by adding a penalty function to the objective func-

tion. The penalty function increases the value of the objective function when the

constraints are violated. The main drawback with these methods is that the penalty

functions are dependent on the problem at hand and, thereby making it difficult to

generalize. On the other hand, Lagrangian methods solve the optimization problem by

introducing a set of Lagrange multipliers that control the penalty function and make

the Lagrange multipliers variables in the optimization program. All penalty methods

have a main drawback; due to the introduced penalty, the objective function becomes

highly nonlinear and this makes it difficult for the unconstrained methods to obtain
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the minimum.

To conclude this description on local constrained methods, it is important to note

that, although local methods do not aim for the global optima, they can be used to

obtain such global optima. Several approaches can be used to continue searching once

a local minimum has been obtained, thereby enabling the identification of all local

minimum and, therefore, also the global minimum. Some of these methods based

on a stochastic approach are: random multi-start methods [20, 21] and ant colony

searches [22]. In the former method, once a minimum has been obtained, it restarts

the optimizer with a new, randomly generated initial point. The second method

uses the information from search agents (ants) in order to find the global minimum.

Some other methods introduce a deterministic approach. For example, in the local-

minimum penalty method [23] the objective function is penalized if the algorithm

tends to go to an already known local minima.

The other group of constrained methods, the global methods, can be classified as

direct or transformation-based. Direct methods solve the problem without transform-

ing it into a simple problem. Transformation-based methods transform the initial

constrained optimization problem into an unconstrained problem. Direct methods

include covering methods and pure random searches. Covering methods follow a de-

terministic approach where regions of the design space are tested and eliminated if

specific design criteria are not met. The most common of these methods are the inter-

val methods [24]. Pure random searches evaluate randomly generated points until a

minimum is obtained. The main drawback of both these methods is that they require

a large number of function evaluations and are therefore computationally expensive.

Global transformation-based methods start by transforming the original problem

into an unconstrained problem. Then, global unconstrained techniques are used to

obtain the global minima. Popular unconstrained global methods are: genetic algo-
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rithms [25], evolutionary algorithms [26] and simulated annealing [27]. These methods

have the same drawback as the global direct methods; they require a large number

of objective function evaluations, therefore the computational cost of the method

becomes excessive when the evaluation of objective function and constraints is time

consuming.

1.2.2 Aerodynamic Shape Optimization

During the late seventies Hicks et al. published one of the first papers on aerodynamic

shape optimization [28]. In [28], Hicks used a first-order optimization technique in

conjunction with a fully-potential inviscid flow solver in order to determine the op-

timal shape of a wing with respect to a certain performance criteria. Since [28],

aerodynamic shape optimization has become an increasingly active area of research

and several innovative methods for aerodynamic shape optimization of airfoils and

wings [29–31], full aircraft configurations [2,3], and even aero-structural optimization

of full aircraft configurations [32] have been published.

In general, to solve an aerodynamic or airfoil shape optimization problem it is

necessary to:

• Develop a set of parameters that represents the airfoil shape.

• Develop tools that, given a set of parameters, will compute the objective func-

tion and constraints of the optimization problem. This involves an aerodynamic

analysis tool and algorithms to transform the set of parameters into the input

necessary for the analysis tool.

• Develop tools that, given the design variables, objective function and con-

straints, will obtain a new aerodynamic shape close to the optimal or, the

optimal shape itself.
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• Develop tools that, given a set of design parameters, will compute the gradients

of objective function and constraints with respect to these parameters.

The way each one of these problems is solved will influence the optimization process

and the results. Therefore, in the following paragraphs, the most used techniques for

items one, two and four are described. Item three was the focus of attention in the

previous subsection.

Some of the parametrization techniques to represent an aerodynamic shape that

have been applied to optimal shape optimization are: discrete parametrization, an-

alytical parametrization, polynomial parametrization, spline parametrization and,

CAD-based parametrization [33, 34]. A description of these methods is undertaken

in section 3.1. In general, the ideal airfoil shape representation method is one that,

with a small set of parameters can define any possible airfoil shape. If the parameter-

ization technique is not able to represent all possible airfoil shapes, then the optimal

solution is constrained by the shape parametrization, and a true optimal shape can-

not be obtained [35]. On the other hand, if the number of parameters is large, the

optimization problem becomes unnecessarily large and this will result in the need for

excessive computational time in order to obtain the optimum.

Given an airfoil shape, the solution of the flow field yields the objective function

and the constraints of the optimization problem. There are mainly four types of

analysis codes used to solve the fluid flow: the fully potential flow solvers [36], the

coupled boundary-layer potential flow solvers [37], Euler solvers [38], and the viscous

Navier-Stokes flow solvers [38, 39]. Potential flow and Euler solvers solve the fluid

flow by assuming that the viscosity effects are negligible. The coupled boundary-

layer potential flow solvers assume that the viscous effects are only important in

the neighborhood of the aerodynamic shape. Finally, the viscous Navier-Stokes flow

solvers consider the viscous effects to be everywhere in the fluid, and they solve the
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Navier-Stokes equations or the Reynolds Averaged Navier-Stokes (RANS) equations

of the fluid flow. Viscous Navier-Stokes flow solvers are the most accurate solvers of

those mentioned above. However, they are computationally more expensive than the

other analysis codes and, for this reason, their use in aerodynamic shape optimiza-

tion has been limited [31]. In aerodynamic optimization Euler solvers are the most

commonly used.

Euler and viscous Navier-Stokes flow solvers use a discrete decomposition of the

fluid domain, called fluid mesh, to solve the fluid flow. During an optimization pro-

cess, the optimizer will change the aerodynamic shape at each iteration. Assuming

that an initial mesh has been determined for the initial aerodynamic shape, when

the shape of the body changes, the mesh must also change in order to adapt to the

new shape. This is the third part of the optimization algorithm. A methodology

is needed that will modify or reconstruct the fluid mesh everytime the aerodynamic

shape changes. This is a one way fluid-structure interaction problem. Basically, two

solutions have been applied to this problem: the mesh can be rebuilt each time the

shape changes [40] or, the mesh is deformed with the body [41, 42]. In aerodynamic

shape optimization, the second method is the one most commonly used.

Finally, if a first-order optimization algorithms is used, the gradients of objective

function and constraints are needed for the optimization process. Since most of the

computational time is used to obtain the gradients, this is one of the most critical

parts of the optimization algorithm. In order to avoid having to find the gradients,

non-gradient based methods can be used. However, the amount of function evalua-

tions that these algorithms require in order to find the optimum, defeats the initial

purpose. Several methods are available to obtain the gradients: analytical differentia-

tion [32,43,44], finite-differences [32], complex-step derivative [32,45], and automatic

differentiation [46]. These methods are described in detail in section 3.4. Analytical
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differentiation, also known as the adjoint method, is the most computationally effi-

cient. The solution of the flow field and the gradient of the objective function are

obtained in approximately twice the amount of time used to solve the flow field alone,

independent of the number of design variables. On the other hand, finite-differences,

complex-step derivatives and forward automatic differentiation are all more expen-

sive methods of computing the derivatives because the computational time depends

on the number of design variables. However, these methods are easier to implement

and can be used as a black-box.

1.3 Scope of the Thesis

In this thesis, a code for two-dimensional, single element, aerodynamic shape opti-

mization is developed. Given the fluid flow characteristics, the developed code is able

to obtain an airfoil that optimizes certain performance criteria while satisfying certain

constraints. For example, it can minimize the airfoil drag subject to a certain mini-

mum lift requirement. The obtained airfoil has optimal aerodynamic performance for

the fluid flow conditions specified; however, there is no guarantee that the airfoil will

perform optimally away from the specified flow characteristics. The design of optimal

airfoils for multiple fluid flow conditions, usually called robust airfoil optimization, is

outside of the scope of this thesis, and it is part of the future work in our research

group. The design tool has the capabilities to optimize airfoils at subsonic, transonic

and supersonic speeds, however, only subsonic airfoils are of interest in this thesis.

As will be described in chapter 3, the design tool uses a spline representation of the

airfoil, a viscous Navier-Stokes solver, a mesh adaptation method based on deforming

the initial grid, and forward-differentiation to compute the gradients. The use of

a spline representation is chosen because it reduces the number of design variables
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necessary to represent the airfoil and it guarantees an almost free-form airfoil. The

viscous Navier-Stokes solver is used because it guarantees accurate solutions at low

Reynolds numbers where the viscous effects are important. Notice that the design

tool has the capabilities of also using an Euler solver. Finally, forward-difference is

used because of its ease of implementation.

The gradient-based sequential local constrained methods implemented in the com-

mercial package DOT [47] are used for the optimization. The optimization methods

used are: the modified method of feasible direction, sequential linear programming

and sequential quadratic programming. These three methods were proven to yield

good results in the area of structural optimization [8]. In this thesis, the three meth-

ods are analyzed to evaluate their performance and to determine the optimization

algorithm that better adapts to aerodynamic shape optimization problems. These

methods are local methods, therefore the design tool does not guarantee that the

optimal shape is a global optimum.

1.4 Structure of the Thesis

A variety of algorithms have been selected, coupled and implemented in order to

develop a design tool for aerodynamic shape optimization. In what follows, the

rationale for these selections and the algorithms to be used in the design tool are

described. Chapter 2 describes in further detail the optimization algorithms used to

solve the aerodynamic shape optimization problem. An accurate understanding of

the optimization algorithms allows for a better set up of the optimization problem

and will be essential to understanding the performance of each one of the methods

when solving the optimization problem. Once the optimization algorithms are de-

scribed, chapter 3 describes: the method used to represent the airfoil and why it is
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used, the viscous Navier-Stokes solver, the mesh deformation technique, the method

used to compute the gradients and, finally, the implementation of the aerodynamic

shape optimization design tool. Once the design tool has been described, chapter 4

shows several applications of the design tool. The design tool is first applied to solve a

constrained drag minimization problem. To solve the optimization problem the three

optimization algorithms are used. Then, the results are used to validate the program

and to compare the different optimization algorithms and their performance. The de-

sign tool is then applied to the design of an airfoil morphing aircraft. Finally, chapter

5 contains concluding remarks and points out areas for future development in the

areas of aerodynamic shape optimization and multidisciplinary design optimization.
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Chapter 2

Optimization Theory

αα (2.1)

As with most engineering applications, the aerodynamic shape optimization problem

is a nonlinear constrained optimization problem, also called a nonlinear program-

ming problem (NLP). Therefore, most of this chapter focuses on methods used to

solve these types of problems. Additionally, the chapter focuses on gradient-based

optimization algorithms because these are the methods used to solve the problems

in this thesis. Although gradient-based methods do not guarantee a global optimum,

they are used because they are more efficient than non-gradient based methods at

reducing the number of function evaluations needed to achieve the optimum. In

this case, the reduction of the number of function evaluations is extremely important,

since each function evaluation involves the solution of a computational fluid dynamics

(CFD) problem to find the aerodynamic characteristics of a specified shape and this

task is computationally extremely expensive. The three gradient-based constrained

optimization methods implemented in the optimization package DOT are used to

solve the aerodynamic shape optimization problem: the modified method of feasible
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directions, sequential linear programming and sequential quadratic programming [47].

In section 2.1, the general nonlinear constraint problem is mathematically formu-

lated and all its various elements are described. A description follows of the local

optimality conditions for the general nonlinear constraint problem and also a general

discussion of how such problems are solved. The succeeding sections are devoted to

the discussion of the different algorithms that are used in this thesis. Section 2.2

describes the modified method of feasible directions algorithm. Section 2.3 describes

the sequential linear programming (SLP) algorithm. Finally, section 2.4 describes

sequential quadratic programming (SQP) algorithms.

2.1 Preliminaries

In general, a nonlinear unconstrained optimization problem aims to

Minimize f(x) (2.2a)

w.r.t. xk for k = 1, 2, . . . , n (2.2b)

where the function to be minimized, f(x), is known as the objective function. The ob-

jective function depends on a set of variables, x, that can take arbitrary values. These

variables are known as the design variables. The aim of the optimization algorithm

is to obtain the value of the variables, x, that makes the objective function minimal.

This point is known as the solution of the optimization problem and is represented

by x∗. It is important to notice that maximizing a function, m(x), is equivalent to

minimizing the function f(x) = −m(x). Therefore any unconstrained maximization

problem can be solved using an algorithm to solve the standard optimization problem

in (2.2). The same argument holds for constrained optimization. For this reason, it
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is assumed in that follows that the optimization problem is a minimization problem.

The nonlinear constraint optimization problem is slightly different than (2.2) be-

cause the design variables cannot be arbitrarily chosen. The design variables must

satisfy certain constraints. In general,the aim in a nonlinear constraint optimization

problem is

Minimize f(x) (2.3a)

w.r.t. xk for k = 1, 2, . . . , n (2.3b)

subject to: hi(x) = 0 for i = 1, 2, . . . , p (2.3c)

gj(x) ≤ 0 for j = 1, 2, . . . , q (2.3d)

In (2.3), f(x) is the objective function, x is the vector of design variables, n is the

number of design variables, {hi(x) = 0 for i = 1, 2, . . . , p} are the equality constraints

and {gj(x) ≤ 0 for j = 1, 2, . . . , q} are the inequality constraints. Furthermore,

it is assumed that functions f(x), h(x), g(x) are nonlinear, continuous and have

continuous first and second order derivatives.

As discussed, the design variables must satisfy equations (2.3c) and (2.3d). Then,

the design space or feasible region of (2.3), R, is defined as

R = {x : hi(x) = 0 for i = 1, 2, . . . , p and gj(x) ≤ 0 for j = 1, 2, . . . , q} (2.4)

A point inside, x ∈ R is considered a feasible point. In a constrained optimization

problem the minimum must be in the feasible region. An unconstrained problem can

be understood as a constrained problem with an unbounded or infinite feasible region.

Equality constraints are a set of equations that explicitly or implicitly relate some

design variables with other design variables. Therefore, the number of equality con-
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straints must be smaller than the number of design variables, p ≤ n. Furthermore, if

the number of design variables and the number of equality constraints are the same,

the design space will be a finite set of points and the solution of the problem is triv-

ial. Since equality constraints introduce a relation between design variables, in an

equality constrained problem only n− p design variables are arbitrarily chosen. The

rest of the variables are obtained from the value of the arbitrarily chosen variables

and the equality constraints.

Inequality constraints are a set of equations that impose bounds on the design

variables. Unlike equality constraints, the number of inequality constraints is un-

limited. Inequality constraints can be active or inactive. For a feasible point, x, if

gk(x) = 0 the inequality constraint gk(x) is considered to be active. Equality con-

straints must be considered as active constraints. The feasible point x satisfying an

active constraint is at a limit of the design space and not all its neighboring points

are in the feasible region. On the other hand, for a feasible point x, if gk(x) < 0 the

inequality constraint is inactive. In this case, all its neighboring points are feasible

and this inequality constraint does not need to be considered when looking for a new

design point from x1. As an example, consider the problem in figure 2.1. The dashed

region corresponds to the feasible region where g1(x) ≤ 0, g2(x) ≤ 0 and g3(x) ≤ 0.

At the feasible point x1, only constraint g2(x1) is equal to zero. Therefore, only this

constraint is active. The other constraints are inactive.

So far the constraint optimization problem and its components have been de-

scribed. However, it still remains to known how to solve the optimization problem in

(2.3). Before the problem can be solved, it is necessary to know the properties of a

minimizer. Minimizers can be classified as local minimizers and global minimizers.

Definition 2.1.1 (Global minimizer) x∗ is a global minimizer of problem (2.3) if

f(x∗) ≤ f(x) ∀x ∈ R.
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Figure 2.1: Design space, active and inactive constraints

Definition 2.1.2 (Local minimizer) x∗ is a local minimizer of problem (2.3) if

f(x∗) ≤ f(x) ∀x ∈ R with ‖x∗ − x‖ < δ.

For a point x∗ to be a local minimizer, it needs to satisfy the Karush-Kuhn-Tucker

(KKT) conditions. These conditions are outlined here without proof, because they

are the basis of all constrained optimization methods. For proof see [11].

Theorem 2.1.1 (Karush-Kuhn-Tucker (KKT) conditions) If x∗ is a local min-

imizer of the optimization problem (2.3) and the gradient of all active constraints at
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this point are linearly independent, then the following relations hold

hi(x
∗) = 0 for i = 1, . . . , p (2.5a)

gj(x
∗) ≤ 0 for j = 1, . . . , q (2.5b)

∇xL(x∗,λ∗,µ∗) = ∇xf(x∗) +

p∑
i=1

λ∗i ∇xhi(x
∗) +

q∑
j=1

µ∗j∇xgj(x
∗) = 0 (2.5c)

λ∗ihi(x
∗) = 0 for i = 1, . . . , p (2.5d)

µ∗jgj(x
∗) = 0 for j = 1, . . . , q (2.5e)

µ∗j ≥ 0 for j = 1, . . . , q (2.5f)

where

L(x∗,λ∗,µ∗) = f(x∗) +

p∑
i=1

λ∗ihi(x
∗) +

q∑
j=1

µ∗jgj(x
∗) (2.5g)

is the Lagrangian, ∇xL(x∗,λ∗,µ∗) is the gradient of the Lagrangian with respect to x

and λ∗i for i = 1, . . . , p and µ∗j for j = 1, . . . , q are the Lagrange multipliers associated

with the local optimum.

Notice that for unconstrained optimization problems, the KKT conditions become

a single condition, the gradient of the objective function at the local minimizer must

be zero. The KKT conditions must be satisfied for a point to be a local minimizer.

However, this does not guarantee that the point is a local minimizer. To guarantee

that a point is a local minimizer, another condition must be added to the KKT

conditions.

Theorem 2.1.2 (Sufficient conditions for a local minimizer) A point x∗ is a

local minimizer of the problem (2.3) if it satisfies the Karush-Kuhn-Tucker conditions



CHAPTER 2. OPTIMIZATION THEORY 20

and the following relation holds

NT (x∗)∇2
xL(x∗,λ∗,µ∗)N(x∗) is positive definite (2.6)

where NT (x∗) is a matrix whose columns are the basis of the subspace N . Further-

more, N is the null space of the space whose basis is formed by the gradient of all

active constraints.

All constrained optimization algorithms are obtained from the definitions and

theorems described above. Therefore, in the following sections, the concepts discussed

above are used to derive the algorithms implemented in the optimization package

DOT [47]. To derive the algorithms in DOT, the nonlinear optimization problem

below will be considered because this was the problem used to derive the equation

implemented in the optimization package.

Minimize f(x) (2.7a)

w.r.t. xk for k = 1, 2, . . . , n (2.7b)

subject to: gj(x) ≤ 0 for j = 1, 2, . . . , q (2.7c)

where f(x) is the objective function, x is the vector of the design variables, n is

the number of design variables and {gj(x) ≤ 0 for j = 1, 2, . . . , q} are the inequality

constraints. It is also assumed that functions f(x) and g(x) are nonlinear, continuous

and have continuous first and second order derivatives. The equality constraints are

not taken into consideration in the optimization problem because the authors of

the optimization package considered them uncommon in engineering applications.

Equality constraints can be introduced into the problem as two inequality constraints

and the code is proved to yield good results. However, this method is not efficient

compared with working with equality constraints directly inside the code.
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2.2 Modified Method of Feasible Directions

The modified method of feasible directions is a robust nonlinear optimization algo-

rithm. This method appeared in 1983 as a combination of the method of feasible

direction [13,48] and the reduced gradient method of Wolfe [13,48,49].

Using this method and assuming a feasible initial point, the optimization problem

in (2.7) is solved by first finding a search direction, d, that reduces the objective func-

tion and also guarantees the satisfaction of the constraints. Then, a one-dimensional

search is performed to minimize the objective function in the search direction. This

will result in a step size parameter, α. Finally, the design variables are updated using

xk+1 = xk + αdk. This process is repeated until a solution is found. If the initial

point is infeasible, an initial subproblem must be solved prior to the application of

this procedure, to obtain an initial feasible point.

Assuming the current design point, x, is a feasible point of the problem in (2.7),

then the desired search direction should rapidly reduce the objective function while

maintaining a feasible design. In order to reduce the objective function, the search

direction should be at an angle of 90◦ to 270◦ with respect to the gradient of the

objective function. Mathematically this condition is equivalent to

∇Tf(x)d ≤ 0 (2.8)

where x is the actual design point and d is the search direction. A search direction

satisfying (2.8) is called a usable direction.

The search direction must maintain the design in the feasible region, away from

the constraints. In order to guarantee this condition, the search direction should

also be at an angle of 90◦ to 270◦ with respect to the gradient of the constraints.
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Therefore, the search direction must also satisfy

∇Tgi(x)d ≤ 0 (2.9)

where gi(x) ∈ J , J = {gi(x) : CT ≤ gi(x) ≤ CTMIN for i = 1, 2, . . . , qa} is the

set of active inequality constraints and, CT is a small negative number (for example

-0.0001), CTMIN is a small positive number (for example 0.0001) and qa is the

number of active constraints. A search direction, d, satisfying (2.9) is called a feasible

direction. In the case of (2.9) being smaller than zero, the search direction points

toward the feasible region. If (2.9) is exactly zero, the search direction is tangent to

the constraint. Then, it is necessary to take special care during the one-dimensional

search, because if the constraint is convex, any design point following the search

direction would become infeasible.

In conclusion, the desired search direction should be a usable and feasible direction.

Since the main goal is to obtain the maximum possible reduction of the objective

function, the desired search direction can be obtained by solving the optimization

problem

Maximize −∇Tf(x)d (2.10a)

subject to: ∇Tgi(x)d ≤ 0 (2.10b)

dTd ≤ 1 (2.10c)

where gi ∈ J , J is the set of active constraints. In matrix form and transforming

the maximization problem into a minimization problem the aforementioned problem
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becomes

Minimize cTd (2.11a)

subject to: Ad ≤ 0 (2.11b)

dTd ≤ 1 (2.11c)

where

c =


∂f(x)
∂x1

...

∂f(x)
∂xn

 d =


d1

...

dn

 A =


∂g1(x)

∂x1
. . . ∂g1(x)

∂xn

...
. . .

...

∂gqa (x)

∂x1
. . . ∂gqa (x)

∂xn

 (2.11d)

c ∈ Rn×1, d ∈ Rn×1, A ∈ Rqa×n, n is the number of design variables and qa is the

number of active inequality constraints.

Since only the active constraints are used to compute the search direction in (2.10),

bounds on the design variables are introduced to guarantee a bounded solution to the

problem. In this case, quadratic constraints are used to bound the solution instead

of a linear constraint. The reason can easily be seen in figure 2.2 where the search

direction is obtained using linear and quadratic constraints. If linear constraints are

used for each design variable, the optimization algorithm will look for a direction

that ends at one of the edges of the square (in n dimensions, hypersquare). This

allows for a longer vector, resulting in a greater reduction in the objective function.

Therefore, the constraints added to bound the problem would affect the solution. In

order to guarantee that the constraints added to bound the solution do not affect the

solution of the problem, the constraints should guarantee that the vectors are all the

same length in all directions. This is achieved with a quadratic constraint. Then, all

vectors are inscribed in a sphere (or a hypersphere in n dimensions).
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Figure 2.2: Obtained search direction using −1 ≤ d ≤ 1 as a constraing, d1, or ,
dTd ≤ 1, d2

The introduction of quadratic constraints to bound the solution changes the op-

timization problem from a linear programming problem to a more complex problem.

To solve the problem, let us consider the Karush-Kuhn-Tucker conditions. The KKT

conditions for (2.11) require that,

Ad ≤ 0 (2.12a)

dTd ≤ 1 (2.12b)

c + AT µ + µ̂d = 0 (2.12c)

µTAd = 0 (2.12d)

µ̂dTd = 0 (2.12e)

µ ≥ 0 µ̂ ≥ 0 (2.12f)
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where µ ∈ Rqa×1 and µ̂ ∈ R are the Lagrange multipliers for the inequality constraints

of the problem. Multiplying (2.12c) by A,

Ac + AAT µ + µ̂Ad = 0 (2.13)

and defining u, v and b as,

u = µ v = −µ̂Ad b = Ac (2.14)

equation (2.13) can be reformulated as,

(
Â I

) u

v

 = b (2.15a)

u ≥ 0 v ≥ 0 uTv = 0 (2.15b)

where Â = −AAT (2.15c)

and I is the identity matrix. To find the optimal solution, a vector that satisfies the

system of equations (2.15) needs to be found.

If bi ≥ 0 ∀i ∈ 1, . . . , qa, then the vector created with

u = 0 v = b (2.16)

is a solution of the system of equations in (2.15). However, if any bi < 0, then the

vector in (2.16) does not satisfy that v ≥ 0 and therefore it is not a solution. In this

case, a solution is found by obtaining

max
bi

Âii

∣∣∣∣∣
bi<0

(2.17)



CHAPTER 2. OPTIMIZATION THEORY 26

and letting k = i for i, which satisfies (2.17), and replace vk by uk. This is done by

pivoting on Âkk. Repeat the process until all bi ≥ 0. Notice that if bi ≤ 0, then by

the definition of Âkk in (2.15c), Âkk ≤ 0.

Once a solution of (2.15) is obtained, the search direction is found using (2.12c),

µ̂d = −(c + AT µ) = −(c + ATu) (2.18)

Since only the direction of d is of interest, because a line search will be performed

in the search direction to find the optimal magnitude of the vector, µ̂ can be set to

unity. In this way, the search direction is obtained.

Once a search direction has been found, the next step is to find the parameter

α∗ such that xk+1 = xk + α∗dk+1 with f(xk+1) < f(xk) and xk+1 is a feasible point.

If the set T = {gi : ∇Tgid = 0 for i = 1, . . . , t} is null, then the line search is

straightforward. However, if the set T is not empty, the search direction is tangent

to the constraints inside the set. This means that there is a risk of obtaining an

infeasible design point, xk+1. To prevent this, in the line search the constraint is

forced to also be active in the next iteration.

Assuming that the set T is empty. Then, before performing any one-dimensional

search in parameter α, upper and lower bounds for the parameter are needed. Since,

the search direction satisfies that ∇Tf(xk)dk+1 ≤ 0, the lower bound for α must be

zero so that the inequality does not change sign. The upper bound is more difficult

to obtain. If in the k+1 iteration the objective function is reduced by 10% and linear

approximation of f(xk+1) holds,

f(xk+1) = 0.9f(xk) = f(xk) + α∇Tf(xk)dk+1 (2.19)
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then, the parameter α should have the value

α =
−0.1|f(xk)|

∇Tf(xk)dk+1

(2.20)

where the absolute value guarantees that α is positive. Following the same idea, the

gradients of the constraints can be used to find the α that will make the inactive

constraints active at the next iteration. Notice that, since the constraints that are

inactive are not part of the optimization in (2.10), the search direction can move

toward them, i.e. it is possible that ∇Tgi(xk)dk+1 ≥ 0 . For a constraint gi(xk+1),

the value of alpha that makes the constraint active at the next iteration can be found

using a linear approximation of the constraint,

gi(xk+1) = gi(xk) + α∇Tgi(xk)dk+1 = 0

α =
−gi(xk)

∇Tgi(xk)dk+1

(2.21)

Since it is desired to reduce the function by 10% and at the same time obtain a

feasible point, the upper limit for α is obtained using

αu = min

(
−0.1|f(xk)|

∇Tf(xk)dk+1

,
−gi(xk)

∇Tgi(xk)dk+1

)
for i = 1, . . . , q (2.22)

Once the upper and lower bounds have been obtained, a quadratic or cubic poly-

nomial interpolation is used to approximate the objective function and the constraints

inside the bounds. Then, using basic calculus, a set of values of the parameter α is

obtained. One value, αf minimizes the objective function and the other values αi for

i = 1, ..., q make each one of the constraints active. Finally, the optimum value of α
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that reduces the objective function as much as possible and creates a feasible point is

α∗ = min (αf , αi) i = 1, . . . , q (2.23)

where α∗ is the optimal parameter for α. Now, the design variables are updated and

the algorithm can proceed to the next iteration.

To end this discussion, the case where the set T = {gi : ∇Tgid = 0 for i =

1, . . . , t} is not empty must be studied. The constraints inside the set T are tangent

to the search direction. This means that if the design variables are updated following

the search direction, there is a risk of obtaining an infeasible design point at the next

iteration, xk+1, that will violate the constraints in T . To prevent constraint violation,

in the line search the constraints in T are forced to be active in the next iteration,

thereby, introducing a set of equality constraints into the line search. Because equality

constraints are equivalent to relations between design variables, taking a first-order

Taylor expansion of the constraints in T and taking into account that they are active

at iteration k and must be active at iteration k+ 1, an approximate relation between

design variables can be obtained,

gi(xk+1) = gi(xk) + ∇Tgi(xk)d̂k+1 = ∇Tgi(xk)d̂k+1 = 0 (2.24)

where gi(xk) ∈ T and d̂k+1 = αdk+1. Using the relations between variables ob-

tained from (2.24), the search vector can be divided into dependent and independent
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components. Therefore, the last equation can be written as

Gd̂k+1 =
(
N D

)  d̂I

d̂D


k+1

= 0 (2.25)

G =


∇Tg1(xk)

...

∇Tgt(xk)

 (2.26)

where t is the total number of constraints in T , G ∈ Rt×n, N ∈ Rt×n−t, D ∈ Rt×t,

d̂D ∈ Rt×1 and d̂I ∈ Rn−t×1. Then, if D is nonsingular, the dependent variables can

be obtained from the independent variables as

d̂D = D−1Nd̂I (2.27)

where d̂D = αDdD, d̂I = αIdI . Notice that since G has more columns than rows,

it is usually easy to obtain a nonsingular matrix D. The matrix D can be obtained

using row operations to transform G into its Row-Echelon Normal Form as described

in [50]. G will be divided into a set of columns that form an identity matrix and

other columns. The columns that form the identity matrix can be used as D. The

remaining columns will be N.

Then, given the update vector of the independent design variables, d̂I , the rela-

tionship in equation (2.27) can be used to obtain the update vector of the dependent

design variables that guarantees that the constraints in T are active at the next it-

eration, k + 1. First, αI is computed as in the case of T being a null set. The

update vector for the independent variables and the independent design variables are
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obtained using,

d̂
(k+1)
I = α∗Id

(k+1)
I (2.28)

x
(k+1)
I = x

(k)
I + d̂

(k+1)
I (2.29)

Then, the value d̂
(k+1)
D is found using equation (2.27). Since the relation between vari-

ables given by equation (2.27) is derived from a first-order approximation of gi(xk+1),

the relation cannot be used to find an accurate value for d̂
(k+1)
D , since the constraints

are nonlinear. Therefore, the values from equation (2.27) are used as an initial guess

and a method similar to the Newton-Raphson method [51] is used to obtain the exact

value for d̂
(k+1)
D . The procedure to obtain d̂

(k+1)
D is,

Step 1 Determine d̂
(k+1)
I using the method described in the first part with T null.

Step 2 Determine initial guess for d̂
(k+1)
D using equation (2.27)

Step 3 Update design variables using x(k+1) =

x
(k)
I + d̂

(k+1)
I

x
(k)
D + d̂

(k+1)
D

 and compute gi(x
(k+1)).

If gi(x
(k+1)) = CTMIN stop. If not continue.

Step 4 Update d̂
(k+1)
D using

d̂D = D−1
(
−Nd̂

(k+1)
I − gT

)
(2.30)

gT =


g1(x

(k+1))
...

gt(x
(k+1))

 (2.31)

and go to step 3.

At this point, if an initial feasible point is known, the optimization problem in
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(2.7) can already be solved. The only problem that remains to be solved is how to

obtain a feasible initial point. This will be discussed in the next section.

2.2.1 Infeasible Initial Point

The method of feasible direction assumes that an initial feasible point is known. The

optimization process then searches for new feasible points that reduce the objective

function until the optimal is found. However, it is sometimes difficult to obtain a

feasible point; therefore, a technique for obtaining a feasible point is described in

what follows.

To obtain a feasible point, a optimization problem similar to (2.10) can be for-

mulated in order to obtain a search direction pointing toward the feasible region.

Minimize − ηw +
∇Tf(x)

‖∇Tf(x)‖
d (2.32a)

subject to:
∇Tgi(x)

‖∇Tgi(x)‖
d + θiw ≤ 0 (2.32b)

dTd + w2 ≤ 1 (2.32c)

where gi(x) ∈ J , J is the set of active and violated constraints, η and θi are positive

constants. If the value of the constant η is large, the first term of the objective

function dominates the minimization, since the vector ∇Tf(x) is normalized. To

minimize the objective function w must be as large as possible. On the other hand,

from (2.32b), if w is large, ∇Tgi(x)d should be a negative large number, thereby

obtaining a direction that satisfies the constraints. The second term in the objective

function, (2.32a), is introduced to try to obtain a direction that will also reduce the

objective function of the original problem f(x); but as discussed earlier, this is not
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the main goal. The constants η and θi are user defined.

If η is large, the second term in (2.32a) influences the optimization problem

marginally, thereby giving total priority to obtaining a direction that will reach the

feasible region, i.e. a direction perpendicular to the constraints. However, if η is

small, then the first term will have a greater influence on the optimization problem,

and the obtained direction will be a compromise between a direction that reduces the

objective function and that points toward the feasible direction. In DOT, η is ini-

tialized with the value 5.0. If the obtained search direction does not return a feasible

point, η is increased by a factor of 10 and a new direction is obtained. η is allowed

to increase up to 1000 where an upper limit is set to avoid numerical ill-conditioning

of the problem.

The selection process for the parameters θi follows a similar idea. These parame-

ters are known as push-off factors. For large values of θi, the dot product ∇Tgi(x)d

has to be large and negative. Because of this requirement, the search direction is

more perpendicular to the constraint, i.e. the search direction points more toward

the feasible direction. In DOT, the parameters θi are chosen as

θi = θ0

(
1− gi(x)

CT

)2

(2.33)

with θi ≤ 50 and where CT is a small negative constant that represents the minimum

requirement to make the constraint inactive.

To solve the optimization problem in (2.32), the problem is first written in matrix
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form

Minimize cT d̂ (2.34a)

subject to: Ad̂ ≤ 0 (2.34b)

d̂T d̂ ≤ 1 (2.34c)

where

c =


1

‖∇T f(x)‖
∂f(x)
∂x1

...

1
‖∇T f(x)‖

∂f(x)
∂xn

−η

 d̂ =


d1

...

dn

w

 (2.34d)

A =


1

‖∇T g1(x)‖
∂g1(x)

∂x1
. . . 1

‖∇T g1(x)‖
∂g1(x)
∂xn

θ1

...
. . .

...

1
‖∇T gqa (x)‖

∂gqa (x)

∂x1
. . . 1

‖∇T gqa (x)‖
∂gqa (x)

∂xn
θqa

 (2.34e)

c ∈ Rn+1×1, d̂ ∈ Rn+1×1, A ∈ Rqa×n+1, n is the number of design variables of the

initial problem and qa is the number of active and violated inequality constraints. The

problem in (2.34) has the same structure as (2.11). Therefore, the method outlined

in the last section can be used to solve the optimization problem in (2.34).

Once the search direction has been obtained, a line search using the parameter

α is performed in the search direction. As in the last section, the first step is to

determine the bounds of the parameter α. Again, the lower bound is zero because

the search direction points toward the feasible direction, and a negative sign in α

would result in a change in the direction of the vector. The upper bound, however, is

obtained differently here respect to the feasible design case. In this case, the value of

α needs to guarantee that all constraints are satisfied. Therefore, it must guarantee

that the violated constraints will not be violated in the next step and, at the same
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time, it must guarantee that none of the satisfied constraints becomes violated. This

can be achieved using

αu = min

(
max

(
−gi(x)

∇Tgi(xk)d

)
, min

(
−gj(x)

∇Tgj(x)d

))
(2.35)

where i = 1, . . . , qv; j = 1, . . . , qs; qv is the number of violated constraints, and qs is

the number of active and satisfied constraints.

If the objective function increases in the search direction, the value of α given by

equation (2.35) is the final upper bound. However, if the objective function decreases

in the search direction, a larger value may exist for the upper bound of α than the one

given by (2.35), that will satisfy the constraint and decrease the objective function.

Then, αu is found using

αu = min

(
max

(
−gi(x)

∇Tgi(xk)d
,
−0.1|f(x)|
∇Tf(x)d

)
, min

(
−gj(x)

∇Tgj(x)d

))
(2.36)

where again i = 1, . . . , qv; j = 1, . . . , qs; qv is the number of violated constraints and

qs is the number of active and satisfied constraints.

Once the upper and lower bounds have been obtained, a quadratic or cubic poly-

nomial interpolation is used to approximate the objective function and the constraints

inside the bounds. Then, using basic calculus, optimal values of the parameter α are

obtained for the objective function and each one of the constraints. The optimum

value of α that reduces the objective function as much as possible and creates a

feasible points is

α∗ =

 min (αj,max (αf , αi)) if ∇Tf(x)d < 0

min (αj,max (αi)) if ∇Tf(x)d ≥ 0
(2.37)

where αf minimizes the objective function, αi for i = 1, ..., qv makes the violated
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constraints active the next iteration, and αj for j = 1, ..., qs makes the active and

inactive constraints active the next iteration. Then, using the optimal parameter

α∗ the design variables are updated. If the design point is infeasible, the process

described above is repeated until a feasible point is obtained. Once a feasible design

is obtained the algorithm proceeds as described in 2.2.

2.2.2 Implementation

The modified method of feasible directions described in the preceding two sections

can be simplified using the following set of steps:

Step 1 Start k = 0 and xk = x0

Step 2 Evaluate f(xk) and g(xk)

Step 3 If g(xk) ≤ 0, continue. If not, xk is an infeasible design and the steps in section

2.2.1 must be followed until a feasible design is obtained.

Step 4 Identify set of active constraints, i.e. J = {gi(x) : CT ≤ gi(x) ≤ CTMIN for i =

1, 2, . . . , qa}

Step 5 Evaluate gradient of objective function and active constraints

Step 6 Determine search direction by solving the optimization problem in (2.11)

Step 7 Identify the constraints in the set T = {gi : ∇Tgid = 0 for i = 1, . . . , t}.

Perform the appropriate one-dimensional search to find α∗ depending on if set

T is empty or not.

Step 8 Update the design point, xk+1 = xk + α∗dk
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Step 9 Check for convergence. If f(xk+1)−f(xk)

f(xk)
≤ 0.001 in two consecutive iterations or

di ≤ 0.001 ∀i = 1, . . . , n convergence is achieved, STOP.

Step 10 Update the iterations counter, k = k + 1. Go to step 2.

The main advantages of the modified method of feasible directions are: all the

designs after a full cycle are feasible, gradient calculations are infrequent and the

gradient calculations involve only active constraints. Its main disadvantages are:

infeasible designs occur during line search calculations and, the Newton’s method

used to bring the design to the feasible region during a line search sometimes does

not converge. Note that, if an efficient way to compute the gradients exists, the

aforementioned advantage of infrequent gradient calculation becomes a drawback.

2.3 Sequential Linear Programming

Sequential Linear Programming is considered to be one of the simplest methods to

implement; the only necessary requirement is an efficient linear programming solver.

To solve the nonlinear programming problem in (2.7), a linear programming subprob-

lem is created by linearizing the original objective function and constraints at each

iteration. The LP problem is then solved using a linear programming method to

obtain an increment of the design variables that moves toward the optimal solution.

Then, the design variables are updated. This process is repeated iteratively until the

solution is found.

To transform the nonlinear programming problem (2.7) into a LP problem a Taylor

series expansion of the objective function and constraints is used. In the neighborhood

of the design variables at the k iteration, xk, the objective function and constraints
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can be approximated as

f(xk+1) = f(xk) + ∇Tf(xk)d +O(‖d‖2) (2.38a)

gi(xk+1) = gi(xk) + ∇Tgi(xk)d +O(‖d‖2) (2.38b)

where xk+1 = xk + d and i = 1, . . . , q.

Using the linear approximation in (2.38), a linear programming problem can be

formulated to obtain a vector, d, that achieves a new design point, xk+1, which reduces

the objective function f(xk+1) < f(xk) and satisfies the constraints in (2.38b). Unfor-

tunately, there is a problem, the error produced by using the approximation in (2.38)

is proportional to ‖d‖2. Therefore, the norm of d must be limited to small values.

Constraining the norm of d introduces second order equations to the optimization

problem. These new equations defeat the purpose of the linear approximation, since

an LP subproblem cannot be created. Therefore, in order to keep the optimization

problem linear, instead of limiting the norm of the update vector, d, the components

of the vector are limited. The constraints on the components of vector d are known

as move limits. Their selection is critical, and will be discussed below.

Finally, the LP subproblem at iteration k can be formulated as

Minimize ∇Tf(xk)d (2.39a)

subject to: gi(xk) + ∇Tgi(xk)d ≤ 0 (2.39b)

dL ≤ d ≤ dU (2.39c)

where dL and dU are the vectors of lower and upper limits of the components of

d. i.e. the move limits. Notice that the term f(xk) is omitted from the objective

function because to minimize f(x) is the same as minimize f(x) + K where K is a
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constant because the constant does not depend on the design variables, and therefore

it cannot be minimized.

Once the problem is stated, it is necessary to obtain a method to compute the

move limits dL and dU to be used in the LP problem. This is the most critical step of

the SLP algorithm. A correct value for the move limits should be as large as possible,

and, at the same time, should limit the error of the approximations to say, 1%. If

the move limits chosen are too small, the algorithm will converge to the optimum

slowly. On the other hand, if the move limits are too large, the algorithm may never

converge.

If correct move limits are chosen, sequential linear programming has proven to

be a robust and efficient method for nonlinear optimization, [8]. Efficient ways to

determine move limits have been described in [19, 52–54]. In [15] several of these

methods are compared. In DOT, the move limits are computed using the technique

in [52]. Therefore, this is the technique that will be discussed here.

The approach in DOT is as follows [47,52]. At the first iteration, the move limits

for the ith component are chosen as

(dU)i = −(dL)i = max (k|(x0)i|, k) (2.40)

where k is a user defined constant, in this work k = 0.05. Then, in the following

iteration, if the maximum constraint violation increases, the move limits are reduced

by 50% . This is done in order to reduce the design space when the approximations

yield infeasible results. However, this can result in premature convergence if the move

limits are reduced too quickly. To correct for this problem, individual move limits

are increased by 33% for all variables that reach its upper or lower bound in two

consecutive iterations. The 33% is used based on the experience of the designers of
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DOT.

Once the move limits are obtained, the problem in (2.39) can be solved using any

LP algorithm, such as the simplex method or an interior-point method. In DOT, the

modified method of feasible directions is used instead of a LP algorithm. This has

the advantage that if the move limits are too small and no feasible solution exists, the

MMFD code will yield a solution that minimizes the constraints while an interior-

point method or the simplex method may yield inaccurate results. However, if an

optimization problem with a large number of design variables was to be solved, using

the modified method of feasible directions to solve the LP problem would reduce

the computational efficiency of the algorithm. In those cases, a more efficient LP

solver, such as a simplex method or an interior-point method for LP would increase

the efficiency of the method. These methods for LP are described in [11, 51]. If an

interior-point method or the simplex methods are used, special care should be taken

in the cases where no feasible solution exists for the LP problem.

Finally, the design variables are updated using

xk+1 =


xU if xk + d > xU

xk + d if xL ≤ xk + d ≤ xU

xL if xk + d < xL

(2.41)

where xU and xL are the upper and lower bounds for the design variables if they

exist.

2.3.1 Implementation

The sequential linear programming method in DOT can be summarized as follows:

Step 1 Start k = 0 and xk = x0
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Step 2 Evaluate f(xk) and g(xk)

Step 3 Evaluate gradient of objective function and constraints

Step 4 Determine the move limits dL and dU . If it is the first iteration use (2.40), if

not use the method described.

Step 5 Create the LP problem as described in (2.39) using information from steps 3

and 4

Step 6 Update the design point using (2.41)

Step 7 Check for convergence. If f(xk+1)−f(xk)

f(xk)
≤ 0.001 in two consecutive iterations or

di ≤ 0.001 ∀i = 1, . . . , n convergence is achieved, STOP. Notice f(xk+1) will

need to be evaluated.

Step 8 Update the iterations counter, k = k + 1. Go to STEP 2.

2.4 Sequential Quadratic Programming

Sequential Quadratic Programming is considered to be one of the most efficient meth-

ods for solving nonlinear constraint optimization problems. In order to implement

this method, the main requirement is an efficient quadratic programming solver. To

solve the nonlinear programming problem in (2.7), a quadratic programming sub-

problem is formulated using the KKT conditions of the original problem to obtain

the direction that will lead the current design variables to the optimum. Then, a

line search is performed in this direction in order to obtain the next design. The

quadratic subproblem is then updated and the process is repeated until convergence

is achieved.
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The optimal solution of the optimization problem in (2.7) must satisfy the KKT

conditions

gj(x
∗) ≤ 0 for j = 1, . . . , q (2.42a)

∇xL(x∗,µ∗) = ∇xf(x∗) +

q∑
j=1

µ∗j∇xgj(x
∗) = 0 (2.42b)

µ∗jgj(x
∗) = 0 for j = 1, . . . , q (2.42c)

µ∗j ≥ 0 for j = 1, . . . , q (2.42d)

where

L(x∗,µ∗) = f(x∗) +

q∑
j=1

µ∗jgj(x
∗) (2.42e)

is the Lagrangian, ∇xL(x∗,µ∗) is the gradient of the Lagrangian and {x∗,µ∗} is the

optimal design variable-multipliers pair.

In a nonlinear problem and, even more so, when numerical methods are used to

compute the objective function or constraints, the equations in the KKT conditions

can be quite tedious to obtain analytically. Furthermore, once obtained, it is difficult

to solve the complex system of equations generated. Therefore, it is necessary to

approximate the KKT conditions using simpler equations and then solve the problem

sequentially. Given a set of design variables and Lagrangian multipliers in the kth

iteration, {xk,µk}, the goal is to obtain an increment, {δx, δµ}, so that the next design

variables will satisfy the approximated KKT conditions at point {xk + δx,µk + δµ}.

The approximate KKT conditions at the kth iteration are obtained using a first order

Taylor expansion of the equations in (2.42)

gj(xk + δx) ≈ gj(xk) + δT
x ∇xgj(xk) ≤ 0 for j = 1, . . . , q (2.43a)
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∇xL(xk + δx,µk + δµ) ≈

≈ ∇xL(xk,µk) + ∇2
xL(xk,µk)δx + ∇2

xµL(xk,µk)δµ = 0 (2.43b)

(µk + δµ)jgj(xk + δx) = (µk+1)jgj(xk + δx) ≈

≈ (µk+1)j(gj(xk) + δT
x ∇xgj(xk)) = 0 for j = 1, . . . , q (2.43c)

(µk + δµ)j = (µk+1)j ≥ 0 for j = 1, . . . , q (2.43d)

where

∇xL(xk,µk) ≈ ∇xf(xk) +

q∑
j=1

(µk)j∇xgj(xk) (2.43e)

∇2
xL(xk,µk) ≈ ∇2

xf(xk) +

q∑
j=1

(µk)j∇2
xgj(xk) (2.43f)

∇2
xµL(xk,µk) ≈

q∑
j=1

∇xgj(xk) (2.43g)

The equations above can be rewritten in matrix form as

bk + Akδx ≤ 0 (2.44a)

Hkδx + pk + AT
k µk+1 = 0 (2.44b)

µk+1(bk + Akδx) (2.44c)

µk+1 ≥ 0 (2.44d)
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where

bk =


g1(xk)

...

gq(xk)

 Ak =


∇T

x g1(xk)
...

∇T
x gq(xk)

 (2.44e)

pk = ∇xf(xk) Hk = ∇2
xf(xk) +

q∑
j=1

(µk)j∇2
xgj(xk) (2.44f)

δx ∈ Rn×1, µk ∈ Rq×1, bk ∈ Rq×1, Ak ∈ Rq×n, pk ∈ Rn×1, and Hk ∈ Rq×n.

The approximation of the KKT conditions yields the new set of equations in (2.44).

This new set of equations is equivalent to the KKT conditions of the QP problem,

Minimize
1

2
δT

x Hkδx + δT
x pk (2.45a)

subject to: Akδx + bk ≤ 0 (2.45b)

which can be solved easily. In DOT, the QP problem is solved using the MMFD.

By solving the QP problem in (2.45), the design variables increment δx is obtained.

Notice that the new optimization problem minimizes a second order approximation of

the Lagrangian of the original problem, and not just the objective function. Therefore,

the design variable increment reduces the objective function and violated constraints,

while at the same time obtaining the minimum Lagrangian possible.

Two main problems arise from the above formulation: how to compute the Hes-

sian matrix and how to check that the approximation of the KKT conditions holds.

To compute the matrix Hk, second order derivatives of the objective function and

constraints are necessary, and these computations are computationally expensive.

Therefore, a method is necessary to obtain an approximation of Hk that will con-

verge to the real Hessian matrix as the optimization problem evolves, and, that will
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always be positive definite - in order to guarantee the existence of a solution for the

optimization problem in (2.45). The method used to obtain an approximation of the

matrix Hk will be discussed later in this section.

Assuming that a value for Hk exists, and that a solution of the problem in (2.45)

has been obtained, it then becomes necessary to check the accuracy of the solution.

If δx is large, then the approximation of the KKT conditions that led to the opti-

mization problem in (2.45) may not be accurate. In order to test the accuracy of the

approximation and to reduce the value of δx if necessary, a parameter α is used to

control the dimensions of vector δx. Then, once the QP problem in (2.45) is solved,

the vector of the design variables is updated using

xk+1 = xk + αδx (2.46)

and the parameter α is obtained by solving the one-dimensional optimization problem

Minimize
r.t. α

f(xk + αδx) +

q∑
j=1

(rk+1)j max(0, gj(xk + αδx)) (2.47a)

where

(rk+1)j =

 |(µk+1)j| j = 1, . . . , q if first iteration

max(|(µk+1)j|, 1
2
((rk)j + |(µk+1)j|) j = 1, . . . , q else

(2.47b)

and (µk+1)j are the Lagrangians from the approximated problem computed using

µk+1 = (AkA
T
k )−1Ak(Hkδx + pk) (2.48)

This problem is solved using the line search with α ∈ [0, 1] and with an initial α of
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one. Finally, once α has been found the Lagrange multipliers are also updated using

µk+1 = (AkA
T
k )−1Ak(αHkδx + pk) (2.49)

At the first iteration, the Hessian matrix of the Lagrangian, Hk, is approximated

by the identity matrix. In subsequent iterations, the approximation of the Hessian

matrix of the Lagrangian denoted by Bk, is obtained using the BFGS formula [13,

16, 47], commonly used in quasi-Newton methods and written here for completeness

without proof

Bk+1 = Bk −
Bkdkd

T
k Bk

dT
k Bkdk

+
ηkη

T
k

dT
k ηk

(2.50a)

where

dk = αδx = xk+1 − xk (2.50b)

ηk = θyk + (1− θ)Bkdk (2.50c)

yk = ∇xL(xk+1,µk+1)−∇xL(xk,µk+1) (2.50d)

θ =

 1.0 if dT
k yk ≥ 0.2dT

k Bkdk

0.8dT
k Bkdk

dT
k Bkdk−dT

k yk
if dT

k yk < 0.2dT
k Bkdk

(2.50e)

There are other SQP methodologies available in the literature [16]. However, the

SQP discussed here, and implemented in DOT, is one of the most popular versions

of SQP. The DOT implementation has one main disadvantage with respect to other

SQP software; the QP problem is solved using the MMFD, which is computationally

inefficient compared to the simplex method for QP or interior-point methods. How-

ever, since the number of design variables in this thesis is quite small, this problem

is minimal.
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2.4.1 Implementation

The sequential quadratic programming method in DOT can be summarized in the

following steps

Step 1 Set k = 0, xk = x0 and Bk = I where I is the identity matrix

Step 2 Evaluate f(xk) and g(xk)

Step 3 Evaluate gradient of objective function and constraints

Step 4 Solve the QP problem in (2.45).

Step 5 Compute the Lagrange multipliers using (2.48) and compute α by doing the

line search in (2.47)

Step 6 Update the design point and the Lagrange multipliers using (2.46) and (2.49)

respectively

Step 7 Update the Hessian matrix approximation, Bk, using (2.50)

Step 8 Check for convergence. If f(xk+1)−f(xk)

f(xk)
≤ 0.001 in two consecutive iterations or

di ≤ 0.001 ∀i = 1, . . . , n convergence is achieved, STOP. Notice f(xk+1) will

need to be evaluated.

Step 9 Update the iterations counter, k = k + 1. Go to STEP 2.
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Chapter 3

Aerodynamic Optimization

In engineering design by optimization, the first step towards the optimal solution

of the design problem is to formulate the problem in the general optimization form

described in chapter 2

Minimize f(x) (3.1a)

w.r.t. xk for k = 1, 2, . . . , n (3.1b)

subject to: gj(x) ≤ 0 for j = 1, 2, . . . , q (3.1c)

where, from an engineering perspective, x is the design parameters that can be

changed in the design, f(x) is a measure of the performance of the design and gj(x)

are a set of equations used to guarantee that the design meets the necessary require-

ments.

In aerodynamic shape optimization, the design variables, x, in the aforementioned

problem are a set of parameters that represents the shape of the airfoil. The objec-

tive function, f(x), is a combination of aerodynamic characteristics. Finally, the

constraints, gj(x), are aerodynamic and geometric constraints. An example of an



CHAPTER 3. AERODYNAMIC OPTIMIZATION 48

aerodynamic shape optimization problem is

Minimize cd(x) (3.2a)

w.r.t. xk for k = 1, 2, . . . , n (3.2b)

subject to: cdesired
l − cl(x) ≤ 0 (3.2c)

gj(x) ≤ 0 for j = 1, 2, . . . , q (3.2d)

where x represents an airfoil shape, cl(x) and cd(x) are the lift and drag coefficient

for the airfoil shape represented by x, cdesired
l is a minimum lift requirement and gj(x)

are a set of linear geometric constraints to constrain the shape of the airfoil. In

this case, the objective function and the aerodynamic constraint, (3.2c), are obtained

numerically by solving a set of partial differential equations that model the flow

around the airfoil. In particular, the Navier-Stokes equations and a transport equation

to model the turbulence are solved iteratively using a numerical method to obtain the

value of cl(x) and cd(x). The evaluation of these two terms is the most time consuming

part of the optimization process taking more than 95% of the computational time.

To write and solve the problem in (3.2) it is necessary to:

• Develop a set of parameters, x, that represents the airfoil shape.

• Develop tools that, given a set of parameters, x, will compute the objective func-

tion and constraints. Namely, an analysis tool, and an algorithm to transform

the set of parameters into the input necessary for the analysis tool.

• Develop tools that, given design variables, x, objective function, f(x), and

constraints, gj(x), will obtain a new shape closer to the optimal. These tools

were discussed in chapter 2.
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• Develop tools that, given a set of parameters, x, will compute the gradients of

the objective function and constraints with respect to the parameters x.

In this chapter, all the components listed above are discussed in detail. Section

3.1 focuses on the different methods used to represent the airfoil and, in particular,

it focuses on the method finally chosen in this work. Section 3.2 describes the com-

putational fluid dynamics solver used to compute the aerodynamic characteristics of

the given shapes. CFD solvers need a discretization of the flow domain in order to

obtain the characteristics of the airfoil. Such discretization is called the fluid mesh.

In section 3.3, the method used to translate the set of parameters, x, that defines the

airfoil into a fluid mesh is discussed. Section 3.4 describes the existing methods used

to compute the gradients. The method chosen in this thesis to obtain the gradients is

contrasted with other methods. Finally, section 3.5 focuses on the implementation of

aerodynamic shape optimization and the coupling of all different elements described

in order to create an efficient and robust program for airfoil design.

3.1 Shape Representation

To formulate an aerodynamic shape optimization problem in the form of (3.1), a

shape representation for the airfoil shape is necessary. This representation should be

able to represent the airfoil with a small set of parameters, and it should also be able

to represent a wide variety of shapes. The former property is necessary in order to

reduce the computational time required to solve the optimization problem, and in

order to reduce the amount of time necessary to compute the gradient of objective

function and constraints. The latter property is important in order to guarantee that

the optimal shape is not restricted by limitations of shape representation capabilities.

Additionally, the shape representation needs to be able to be converted into the
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necessary input for the analysis tools used to solve the analysis problem - in this case

a CFD solver.

Shape parametrization is an active area of research. In the literature, several

methods have been suggested for representing an aerodynamic shape [33, 34]. The

main methods are

• Analytic Representation

• Partial Differential Equation Representation

• Discrete Representation

• Polynomial Representation

• Spline Representation

• CAD Representation

In the analytic representation, given an original shape, a set of functions are

used to deform the original shape. The parameters that determine the value of the

functions are used as the design variables. Therefore, the design variables represent

the deformations added to the original shape in order to create the new shape. This

method was used in [28] to optimize the shape of several airfoils and wings. This

method has the advantage of reducing the necessary number of design variables to a

small set. It also gives the airfoil an smooth surface. On the other hand, it is only

applicable to simple geometries and the deformations are dependent on the shape

functions used.

The second method, the partial differential equation representation, generates the

shape by solving a boundary-value problem of an elliptic partial differential equation.
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This method has two main drawbacks: it is time consuming to implement and it is

only applicable to simple geometries.

The discrete representation method can only be used when using computational

methods to solve the analysis problem. If a computational method is used, the bound-

ary nodes of the fluid flow mesh at the surface of the airfoil can be used as the design

variables. This method is easy to implement and can be used with any geometry.

However, it requires a large number of design variables and the final shape can have

high frequency oscillations. In [55,56], this method is used with a smoothing function

to prevent the high frequency oscillation of the shape.

A polynomial can also be used to represent the airfoil. In this method, the coef-

ficients of a polynomial are used as the design variables. An example is the NACA

representation for an airfoil. If the NACA representation is used, then the thickness,

maximum camber and position of the maximum camber can be used as the design

variables to define the airfoil. [57] describes the NACA representation. The main ad-

vantage in this method is that a small set of design variables can be used. The main

disadvantage is that if a low order polynomial is used some shapes become impossible

to represent.

A spline can also be used to represent the airfoil. Spline representations use a

sum of weighted polynomials to represent the airfoil. In this case, the set of weight-

ing parameters, called control points, are used as the design variables. There exist

several types of splines: Bezier curves, B-splines and non-uniform rational B-spline

(NURBS). The most complete spline representations are the NURBS which are able

to represent any shape using a small set of parameters, create a smooth shape and

offer the possibility of modifying the shape locally. However, they are difficult to

implement. B-splines are easier to implement and they offer the same advantages as

NURBS, except that they are unable to represent implicit conic sections; however,
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these shapes are not common in airfoils. Finally, Bezier curves are the simplest spline

to implement. However, in order to represent a complex geometry they require high

order polynomials and they do not offer the same advantages as the other two groups.

In this work, B-splines are used to represent the shape of the airfoil. In particular,

a uniform cubic B-spline is used [58]. There are several reasons for using a B-spline: it

allows for a reduction in the number of design variables required because the control

points of the B-spline can be used as the design variables; the perturbation of one

control point has only local effects on the design shape; it results in a curve with C2

continuity, therefore it guarantees a shape that is most likely possible to manufacture;

it is easy to implement; and, it generates a smooth airfoil without any high frequency

oscillations. In the next subsection, the B-spline representation is described.

3.1.1 Uniform Cubic B-Spline Airfoil Representation

In general, a two-dimensional curve can be represented parametrically as

Q(ū) = (X(ū), Y (ū)) (3.3)

where X(ū) and Y (ū) are single-value functions of the parameter ū. X(ū) and Y (ū)

represent the Cartesian coordinates x and y of the points on the curve for any value

of ū. In order to be able to represent complex curves, X(ū) and Y (ū) are divided

into several pieces, called segments. Each segment is characterized by a different

polynomial representation. The different polynomials are then joined together to

create a piecewise polynomial curve. The values of ū where the segments are joined,

ūi, are called knots. Therefore, to represent a curve, a sequence of knots is created

and then, at each segment between knots, a polynomial is used to represent the curve.

In a uniform cubic B-spline (B- stands for basis) the curve is created by a sum of
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weighted basis functions over a uniform knot sequence

Q(ū) =
∑

i

ViBi(ū) =
∑

i

(xiBi(ū), yiBi(ū)) (3.4)

where Vi are the control points of the spline and Bi(ū) are the basis functions. The

basis functions are defined as

Bi(ū) =



bi−1 = 0 if−∞ < ūi ≤ i

bi = 1
6
u3 if i < ūi ≤ i+ 1

bi+1 = 1
6
(1 + 3u+ 3u2 − 3u3) if i+ 1 < ūi ≤ i+ 2

bi+2 = 1
6
(4− 6u2 − 3u3) if i+ 2 < ūi ≤ i+ 3

bi+3 = 1
6
(1− 3u+ 3u2 − u3) if i+ 3 < ūi ≤ i+ 4

bi+4 = 0 if i+ 4 < ūi ≤ ∞

(3.5)

where u = ū−ūi

ūi+1−ūi
and ū ∈ [ūi, ūi+1]. The composite polynomial in (3.5) is obtained

by using a cubic polynomial to represent each segment, requiring that at the joined

positions, first derivatives and second derivatives match and requiring that bi(0) +

bi+1(0) + bi+2(0) + bi+3(0) = 1. Figure 3.1 shows the shape of the basis function. The

uniform knot sequence is a sequence of knots where all the knots are different and a

certain distance apart. In this case, the knot sequence considered is ūi+1 = ūi + 1.

From (3.4) and (3.5), the coordinates of a point in the curve on an knot interval

ūi ≤ ū < ūi+1 are obtained as

Q(ū) =
∑

i

ViBi(ū) = Vi−3Bi(ūi−3)+Vi−2Bi(ūi−2)+Vi−1Bi(ūi−1)+ViBi(ūi) (3.6)

This equation is used to compute any point in the curve. Then, in order to be able to
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Figure 3.1: B-Spline basis function

use equation (3.6), four basis function segments must exist at any location, including

the initial and final curve interval. Therefore, the first curve segment must start at

ū3 and the last segment must be until ūm+1 where m is the number of control points.

For example, figure 3.2 shows the four segments used to create the initial segment of

the spline curve as well as the control points numbering.

From figure 3.2, it can be observed that the curve will start at the second control

point. However, it is sometimes desirable to start the curve at the initial control

point. In this case, phantom vertices can be created to generate a new initial or new

final control point. Several methods can be used to create phantom vertices [58]. In

this thesis, the phantom vertices at the beginning and at the end are created using

V−1 = 2V0 −V1 (3.7)

Vm+1 = 2Vm −Vm−1 (3.8)
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Figure 3.2: Basis functions used to create the initial segment of the curve Q(ū)

which guarantees that the curve starts and ends at V0 and Vm respectively. This

is particularly useful in this case because the initial and final control points are the

trailing edge of the airfoil, therefore the curve should start at such points.

Given the above discussion, the main properties of the uniform B-spline can be

described as follows. Due to (3.4) and also to the fact that the basis functions are

zero everywhere but in the four segments around the control point, moving a control

point only affects part of the curve. This gives local control over the B-spline curve

generated. Moreover, due to the requirements set to create the composite polynomial

in (3.5) the basis functions are C2 continuous and since the sum of C2 continuous

function is also C2 continuous, any B-spline is C2 and therefore, smooth.

To summarize, in this thesis, a uniform cubic B-spline with 15 control points is

used to represent the airfoil shapes. From the 15 control points, the y-coordinate of

control points numbered 1-5 and 7-11 in figure 3.3 are used as design variables. The

three control points aligned at the x position, one at the fixed point (0, 0) and the
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Figure 3.3: B-spline representation of a E66 airfoil using 15 control points

other two symmetrically distributed around (0, 0) in the y direction are used to force

the different airfoils to have the same leading edge point. Then, a last design variable

is introduced to represent the distance between the two aforementioned points at

the leading edge. This is done in order to control the radius of curvature of the

leading edge. This B-spline representation can be used to represent a great variety of

existing and new airfoil shapes. Its adaptability makes it a good candidate for shape

optimization, because it guarantees an almost free-form representation of the airfoil.

For example, in figure 3.3 the B-spline is used to represent the Eppler 66 airfoil [59].

It can be observed that the B-spline accurately represents the E66 airfoil.
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3.2 Fluid Flow Analysis

Once an airfoil is obtained from the shape representation, the aerodynamic charac-

teristics of this airfoil must be obtained by solving the fluid flow around the airfoil.

In this case, the flow around the airfoil is assumed to be steady, viscous and incom-

pressible, and it is solved using a viscous Navier-Stokes CFD code. The CFD code

used is the Structured PArallel Research Code (SPARC). SPARC has been developed

by Magagnato [39] at the University of Karlsruhe, Germany, and the source code is

available free of charge in exchange for further development and debugging. SPARC

is implemented in Fortran90 and it is designed to be used in distributed memory

parallel architectures, such as a parallel cluster. The parallel capabilities are imple-

mented using the message passing interface (MPI) programs. In this thesis, only

small modifications have been made to SPARC, the sole purpose being to debug the

code and to ease the interactions between SPARC and the other programs used in

the optimization process.

SPARC is a very general code able to solve a large variety of problems: steady

and unsteady flows, laminar and turbulent flows, compressible and incompressible

flows and, viscid and inviscid flows. Furthermore, it has a large number of turbulence

models. Upon solution of the flow, SPARC returns lift, drag and pitch moment

coefficients as well as the pressure and velocities of the flow field. Therefore, this code

is an excellent choice for solving fluid flow problem because it is able to output to

the optimization algorithm, the required aerodynamic characteristics and, enables the

optimization code to optimize airfoils for any flow regime. Furthermore, there is the

possibility of comparing the behavior of several turbulence models. Finally, because

the source code is available, the code may be modified to include the computations

of the analytic sensitivities of the design variables.
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To obtain the flow field around the airfoil SPARC solves the compressible mass-

weighted Reynolds Averaged Navier Stokes (RANS) equations [39,60]

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 compressible continuity (3.9a)

D(ρu)

Dt
= −∂p

∂x
+

∂

∂x

(
µl
∂u

∂x
− ρu′2

)
+

∂

∂y

(
µl
∂u

∂y
− ρu′v′

)
+

∂

∂z

(
µl
∂u

∂z
− ρu′w′

)
x momentum (3.9b)

D(ρv)

Dt
= −∂p

∂y
+

∂

∂x

(
µl
∂v

∂x
− ρu′v′

)
+

∂

∂y

(
µl
∂v

∂y
− ρv′2

)
+

∂

∂z

(
µl
∂v

∂z
− ρv′w′

)
y momentum (3.9c)

D(ρw)

Dt
= −∂p

∂z
+

∂

∂x

(
µl
∂w

∂x
− ρu′w′

)
+

∂

∂y

(
µl
∂w

∂y
− ρv′w′

)
+

∂

∂z

(
µl
∂w

∂z
− ρw′2

)
z momentum (3.9d)

where ρ is the density of the flow, u, v, w are the mean x, y and z velocities of the

flow, p is the mean pressure, and µl is the laminar viscosity of the flow. To solve the

above equations, the pressure is obtained by using the energy equation and the ideal

gas law, [60]. The Reynolds stress terms

τ t
ij = −ρu′iu′j for i = 1, 2, 3 and j = 1, 2, 3 (3.10)

are not solved and are modeled by the addition of an eddy viscosity term to the

laminar viscosity. In the last equation, indexes i, j and k imply summation over

all values of repeated subscript and u1, u2 and u3 are equivalent to u, v and w

in equation (3.9). The eddy viscosity is obtained using the Spalart-Allmaras one

equation turbulence model without the tripping term [61]. The Spalart-Allmaras
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model in SPARC has been extensively tested at the University of Victoria to predict

the lift and drag of a NACA0012 airfoil and it has yielded good results for steady

and unsteady state simulations [62]. The main disadvantage of the Spalart-Allmaras

model is that it is unable to properly predict laminar-to-turbulent transition because

the tripping term in [61] is not implemented in SPARC. In the future, the Spalart-

Allmaras model in SPARC should be improved by introducing a tripping source term

to force laminar-to-turbulent transition, as discussed in [61].

SPARC solves the partial differential equations in (3.9) by discretizing the equa-

tions using a finite volume formulation and central differences in space. To discretize

the equations, SPARC uses a structured multiblock discretization of the fluid flow do-

main, commonly called fluid mesh. The multiblock mesh enables SPARC to divide the

flow domain and use MPI to solve the governing equations using a distributed mem-

ory architecture. Once the equations have been discretized in space, a Runge-Kutta

ordinary differential equation (ODE) solver is used to solve in time the discretized

equations in space. If the flow is steady, a similar procedure is used to solve the

equations in (3.9). However, the changes of the velocity and pressure in time are

considered to be the residuals of the equations, and are reduced to zero at the steady

state solution. Additionally to the ODE solver, SPARC uses a multigrid technique

and local stepping to accelerate convergence to the steady state.

Once the fluid flow around the airfoil has been solved the aerodynamic charac-

teristics of the airfoil can be obtained. The aerodynamic characteristics obtained

from SPARC are the lift, drag and pitch moment coefficients of the airfoil. These

parameters are defined as

cl =
Lift

1
2
ρU2

∞S
(3.11)

cd =
Drag

1
2
ρU2

∞S
(3.12)
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cm =
Pitch Moment

1
2
ρU2

∞Sc
(3.13)

where U∞ is a reference velocity, usually the freestream velocity of the flow, S is the

wing area, ρ is the density of the fluid and c is the chord of the airfoil. The chord is

defined as the distance between the leading and the trailing edge.

3.3 Fluid Mesh Deformation

Each optimization cycle results in a new airfoil. In order to obtain the aerodynamic

characteristics of the new airfoil using SPARC, it is necessary to obtain a new fluid

mesh that represents the new airfoil. There are two main methods used to obtain

the new fluid mesh: 1) the entirely new mesh can be automatically created from the

new shape, 2) the original mesh can be deformed to adapt to the new shape. In this

thesis, the second method is used because it is computationally more efficient and

because automatic mesh generation is mostly used with unstructured meshes. In our

case, the CFD code uses a structured mesh. For structured meshes, typically the

generation of the fluid mesh is done by the designer instead of automatically, and it

usually takes up a large amount of time; therefore, it is the most natural choice to

reuse the original grid by using a deformation technique.

Mesh deformation has been investigated in fluid-structure interaction [63] and in

shape optimization problems. To deform an initial mesh there are also two main

methods: 1) spring-analogy methods, discussed in [41] and 2) algebraic methods.

Spring-analogy methods assume that there is a spring connecting each grid point

with its neighboring nodes. Initially, the system of spring is in equilibrium. Then,

when a boundary deforms, the position of the mesh nodes are recalculated to set the

system in equilibrium. These methods are computationally expensive because the size
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of the system of equilibrium equations for the springs is proportional to the number

of mesh points. This number is usually large - in our case more than 10,000 nodes.

Algebraic methods employ algebraic equations to redistribute the deformations of the

airfoil over the mesh.

In this thesis, the deformation technique used is a combination of the spring-

analogy method and an algebraic method [42]. Since our problem is two-dimensional,

and also for the sake of simplicity, the deformation methodology is discussed for a

two-dimensional mesh only. The three-dimensional description of the algorithm can

be found in [42].

In a two-dimensional structured multiblock mesh, each block is a quadrilateral

element. To create the grid inside the block, the four block edges are divided into

smaller segments with opposing edges having the same number of divisions. Then,

the mesh inside the block is generated by creating lines connecting the edge nodes of

opposing edges and using the points created from the intersection of these lines as

the grid nodes. Figure 3.4 shows a multiblock structured grid. In the figure the thick

solid lines represent block divisions while the thin lines are the lines connecting the

points created by dividing the edges. Each point on the grid is characterized by a set

of two indexes. In what follows, the indexes will be i and j, and are either local or

global. Global indexes refer to the indexes of the nodes that form the blocks. Local

indexes refer to the indexes contained inside a block.

Given an initial two-dimensional structured multiblock mesh and a new airfoil

shape, the deformation process can be broken down into the following steps:

• Find a set of parameters that relate the nodes of the mesh that belong to the

airfoil boundary to the airfoil representation

• Parametrize all mesh nodes for each specific block
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Figure 3.4: Example of a two-dimensional multiblock fluid mesh around an airfoil

• Compute deformations of the mesh points on the airfoil boundary

• Compute deformations of the corner blocks using the spring-analogy method

• Compute the deformations of edges and interior of each specific block indepen-

dently using the computed corner block deformations and an algebraic model,

in this case, transfinite interpolation (TFI)

• Add the computed deformations to the original mesh to obtain the new mesh.

In this list, steps 1 and 2 are only carried out at the beginning of the program.

In step 1, the B-spline parametrization variable, u, associated with each one of

the mesh points on the airfoil boundary is obtained. Since the control point positions

of the B-spline defining the initial airfoil are known, and since the boundary nodes

of the mesh are placed on this B-spline, the u value associated with each node is
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obtained by generating points of the B-spline with different values for the u variable

until a B-spline point is found that matches the coordinates of the mesh point. This

process is repeated for each mesh point. Finally, the u values for each mesh point are

recorded, so that the position of the boundary nodes of the mesh can be obtained

from any new B-spline generated by the optimizer. Therefore, the u values give the

relation between the boundary mesh points and the airfoil shape, so that the fluid

mesh can be deformed to adapt to any new airfoil shape possible.

In step 2, the mesh points in each block are parametrized using the normalized

arclengths according to the block local indexes i and j. As an example, the normalized

arclength parameter of a line with varying i index and fixed j index would be obtained

using

s1,j = 0 (3.14)

si,j = si−1,j +
√

(xi,j − xi−1,j)2 + (yi,j − yi−1,j)2 (3.15)

Mi,j =
si,j

simax,j

(3.16)

where i = 2, . . . , imax, si,j is the arclength of the grid point with indexes (i, j), imax is

the total number of grid points in the i direction and Mi,j is the normalized arclength

of the grid point with indexes (i, j). The normalized arclength parameter in the j

direction, Ni,j, is found using the same procedure.

Using the design variables derived from the optimization process, a new B-spline

is defined. Then, in step 3, using the B-spline parametrization and the u parameter

associated to each grid point at the boundary, the new position of each boundary

point is found. Once the grid points on the airfoil have been deformed, each one of

the blocks that forms the grid is deformed in order to guarantee that the block size is

not greatly reduced. This is done using the segment spring-analogy method described
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in detail in [41]. However, here the method is only applied to the block corner nodes

instead of all the nodes of the mesh. The corner points of all the blocks in the

multiblock mesh are assumed to be connected to their neighboring block corners by

springs. The stiffness of the springs are inversely proportional to the original length of

the connection edges. For example, the spring connecting corners with global indexes

(i, j) and (i+ 1, j) is defined as

ki+ 1
2
,j =

1

((xi+1,j − xi,j)2 + (yi+1,j − yi,j)2)
p
2

(3.17)

where the indexes are global and p is a parameter that can be used to increase the

stiffness of the springs. The higher the value of p, the stiffer the spring. In our case,

p is set to 1. Once the stiffness of the springs have been calculated, the new position

of the corner blocks is calculated by solving the static equilibrium equations of the

spring system. At node (i, j) the two-dimensional equilibrium equations are

F i,j = ki+ 1
2
,j(δi,j − δi+1,j) + ki− 1

2
,j(δi,j − δi−1,j) + ki,j+ 1

2
(δi,j − δi,j+1)+

ki,j− 1
2
(δi,j − δi,j−1) = 0 (3.18)

where F i,j is the vector of x and y forces on the (i, j) node and δi,j is the vector of

deformations of the (i, j) node.

The system of equations generated by the equilibrium equations of each corner

block is solved iteratively. In this case, the system is solved using a predictor-corrector

iterative process. The predictor step is computed using

δ̄i,j = δn
i,j + (δn

i,j − δn−1
i,j ) (3.19)

where n indicates the iteration number. Note that when δi,j approaches the solution,
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δ̄i,j approaches δi,j since δn
i,j ' δn−1

i,j . Then, from equation (3.18) the corrector step

is

δn+1
i,j =

ki+ 1
2
,j δ̄i+1,j + ki− 1

2
,j δ̄i−1,j + ki,j+ 1

2
δ̄i,j+1 + ki,j− 1

2
δ̄i,j−1

ki+ 1
2
,j + ki− 1

2
,j + ki,j+ 1

2
+ ki,j− 1

2

(3.20)

After several iterations the solution of the system is achieved. Note that by using the

spring-analogy method only at the corner of the blocks, instead of in all grid nodes,

the system of equations to solve is greatly reduced.

Once the corner block deformations are obtained transfinite interpolation is used

to interpolate the corner block deformations into the edges of the block that are

not solid boundaries, and also into the interior of the block. The one-dimensional

transfinite interpolation in an edge with free i index is

∆Ei,1 = (1−Mi,j)∆P 1,1 +Mi,j∆P imax,1 (3.21)

where i = 1, . . . , imax, ∆Ei,j are the deformation of the node (i, j), ∆P 1,1 and

∆P imax,1 are the apriori computed deformations of the corner points and Mi,j is

the normalized arclength of node (i, j) computed in step 2. The interpolation in the

j direction is similar.

Once the edges have been deformed, transfinite interpolation is used again to

obtain the deformation of all the grid points in the interior of each block. The

deformation of a node (i, j) inside a block is obtained using

∆Si,j = Ai,j∆Ei,1 +Bi,j∆Ei,jmax + Ci,j∆E1,j +Di,j∆Eimax,j − Ai,jCi,j∆P 1,1

−Bi,jCi,j∆P 1,jmax − Ai,jDi,j∆P imax,1 −Bi,jDi,j∆P imax,jmax (3.22a)
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where

Ai,j = 1− ηi,j Bi,j = ηi,j (3.22b)

Ci,j = 1− ξi,j Di,j = ξi,j (3.22c)

Pi,j = 1− (Mi,jmax −Mi,1)(Nimax,j −N1,j) (3.22d)

ηi,j =
Mi,1 +N1,j(Mi,jmax −Mi,1)

Pi,j

(3.22e)

ξi,j =
N1,j +Mi,1(Nimax,j −N1,j)

Pi,j

(3.22f)

i = 1, . . . , imax, j = 1, . . . , jmax, ∆Ei,1 is the deformation of the edge with index

j = 1.

Finally, once all the deformations have been computed, they are added to the

original grid and a new grid is obtained.

Using this method to deform the grid, only the movement of the corner block re-

quires the use of information from all blocks. The rest of operations can be performed

block by block, and therefore the grid deformation algorithm can be parallelized eas-

ily. Furthermore, because the spring-analogy method is only used for the corner block

points, the system of equations to be solved is relatively small. Finally, the original

mesh is only perturbed, therefore it retains the structure of the initial grid. As an

example, figure 3.5 shows a detail of the original and deformed airfoil mesh. It can be

seen that the deformed grid retains the structure of the original grid even after a large

deformation of the airfoil. The main disadvantage of this method is that some cells

of the grid may sometimes overlap, i.e. negative block cells can occur. Negative cells

are not allowed by the CFD solver, and will therefore cause the simulation to stop. A

case where negative cells may occur is when a block contains an edge at a solid wall.

The edge at the solid wall deforms with the wall. It can happen that the wall does
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not deform at the corner points of the block, but is greatly deformed in the middle

of the block. Then, because only the information used to obtain the deformations of

the other edges of the block are from the corner nodes deformation, the other edges

are not aware of the deformation of the solid wall and will not expand accordingly.

This may result in overlapping edges and negative volume cells.

3.4 Sensitivity Analysis

Sensitivity analysis is concerned with obtaining the gradients or sensitivities of a cer-

tain output variable with respect to an input variable. In the case of optimization,

sensitivity analysis is used to obtain the derivatives of objective function and con-

straints with respect to the design variables. Sensitivity analysis for CFD is an active

area of research.

In the literature, several methods have been suggested to compute the gradients

of the aerodynamic characteristics with respect to the design variables

• Finite-Difference

• Complex-Step Differentiation

• Automatic Differentiation

• Analytical Differentiation, i.e. the adjoint method

In the following, each one of these methods is described in order to show the rationale

behind the decision to use finite-differences to compute the gradients in this thesis.

Forward-difference uses a Taylor series expansion of a function around a point, x0,

to obtain an approximation of the gradient. Given the value of a multi-dimensional
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Figure 3.5: Original (above) and deformed (below) mesh around an airfoil
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function at x0, f(x0), the value of the function in the neighborhood of x0 can be

expressed using its Taylor series expansion as

f(x1) = f(x0) + δT ∇f(x)|x=x0+
1

2!
(δ2)T ∇2f(x)|x=x0+ . . .

+
1

n!
(δn)T ∇nf(x)|x=x0+O(‖δ‖n) (3.23)

where δ = x1 − x0. Taking the first three terms of the Taylor expansion and using a

perturbation vector, δi ∈ Rn×1, with the ith component with a value δ and all other

components equal to zero, an expression for the ith component of the gradient of f(x)

is obtained

f(x0 + δi) =f(x0) + δT
i ∇f(x)|x=x0+O(δ2)

=f(x0) + δ
∂f(x)

∂xi

∣∣∣
x=x0

+O(δ2) (3.24)

then, rearranging the terms in 3.24, a first-order approximation of the ith component

of the gradient can be obtained as

∂f(x)

∂xi

∣∣∣
x=x0

=
f(x0 + δi)− f(x0)

δ
+O(δ) (3.25)

Equation (3.25) is known as the forward-difference equation to compute the gra-

dients. In a similar fashion to the way the forward-difference equation has been

obtained, other higher order approximations of the gradient can also be obtained.

Forward difference needs n + 1 function evaluations to compute the gradient of a

function, with n number of independent variables. Forward difference is easy to im-

plement and is computationally more efficient than complex-step differentiation and

automatic differentiation methods [45, 64]. However, forward-difference is also the

most inaccurate of all the methods described above. This is because the error is
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proportional to the step size. Therefore, to reduce the error, the step size must be re-

duced. However, if the step size becomes too small, the two terms that are substracted

on the numerator become very similar and a numerical error occurs when computing

their difference. Therefore, it is necessary to obtain a step size small enough to reduce

the error, but not so small that substractive errors occur. This is known as the step

size dilemma. This problem is also encountered in higher order methods that use the

Taylor series to approximate the gradients, e.g. the central-difference method [45,64].

Furthermore, for higher order methods more function evaluations are necessary to

compute the gradients.

Complex-differentiation solves the step size dilemma encountered in the finite-

difference methods by using a complex step to compute the gradients. In this case,

taking the first five terms of the Taylor expansion and using a perturbation vector,

δi ∈ Cn×1, with the ith component with a complex step value of iδ and all other

components equal to zero an expression for the function at the point x0 + δi can be

written using a Taylor expansion as

f(x0 + δi) = f(x0) + iδ
∂f(x)

∂xi

∣∣∣
x=x0

− 1

2!
δ2∂

2f(x)

∂x2
i

∣∣∣
x=x0

− 1

3!
iδ3∂

3f(x)

∂x3
i

∣∣∣
x=x0

+

+
1

4!
δ4∂

4f(x)

∂x4
i

∣∣∣
x=x0

+O(δ5) (3.26)

and taking the imaginary part of equation (3.26) and rearranging, a value for the ith

component of the gradient of the function f(x) at x0 is obtained

∂f(x)

∂xi

∣∣∣
x=x0

=
Im(f(x0 + δi))

δ
+O(δ2) (3.27)

In this case, there is no substractive term in the equation and therefore, the step size

dilemma has disappeared. Furthermore, the approximation is second order instead of
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first order as in equation in (3.25). The number of function evaluations necessary to

obtain the gradient is still n + 1 where n is the number of independent variables of

the function. In order to obtain the gradients using complex-step differentiation, the

source code of the analysis program has to be changed so that all the real variables

become complex variables. Some intrinsic functions such as max and min must also

be redefined. If the designer is really familiar with the analysis code, the required

changes to the code can be accomplished in a small amount of time. It is important

to notice that because all the variables are complex instead of real, the complexified

code requires twice the time of the original code to solve the same problem .

Automatic differentiation (AD) - also known as algorithmic differentiation or com-

putational differentiation - is based on successive application of the chain rule to each

operation performed in the analysis computer code [46, 65]. Since the structure of a

computer code is basically composed of a successive set of arithmetic operations used

to compute the value of a function, successive application of the chain rule to each one

of the operations in the code will result in the exact (to machine precision) desired

derivatives. For example, imagine the function f = x1 ∗ sin x2 is to be computed

using a computer code. Defining x1 and x2 as the independent variables and f as the

dependent variable, the value of the gradient of f with respect to the independent

variables can be obtained adding the following equation in the code,

∇f = sin(x2)∇x1 + cos(x2)x1∇x2 (3.28)

where

∇f =

 ∂f
∂x1

∂f
∂x2

 ∇x1 =

∂x1

∂x1

∂x1

∂x2

 =

1

0

 ∇x2 =

∂x2

∂x1

∂x2

∂x2

 =

0

1

 (3.29)
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Using the same procedure in each line of the code, the gradient of all depen-

dent variables with respect to the independent design variables can be obtained. In

this case, the derivatives of intermediate variables with respect to the independent

variables propagate throughout the code until, finally, all derivatives of the depen-

dent variables are computed. This type of automatic differentiation is known as the

forward mode or tangent linear model. Using this method, the modified code uses

approximately 2n times more memory and computational time as the original code

where n is the number of independent variables. Notice that the computational time

and memory of the modified code is independent of the number of function that the

gradients need to be obtained for, i.e. dependent variables. For example, to compute

the gradient of f1(x1) or to compute the gradient of f1(x1) and f2(x1), automatic

differentiation in forward mode will take the same time, 2 times more computational

time than the original code. AD in forward mode is found to be similar to complex

differentiation, [66].

In contrast to the forward mode of automatic differentiation, there is the reverse

mode. In the reverse mode, the derivatives of the final result with respect to interme-

diate quantities - adjoint quantities - are propagated throughout the code. In order to

do so, the flow of the program must be reversed and some variables need to be stored.

Using this approach, the computational time is m, the number of dependent design

variables, instead of the independent number of design variables, n. However, the

memory requirements are larger than using forward mode and depend on the code.

In order to transform a code into a forward or reverse automatic differentiation

code, there are several programs that, given a list of the dependent and independent

variables, precompile the original code and transform it into a AD code. Some of the

codes that can be used to transform FORTRAN source codes to AD codes are: AD-

IFOR, TAMC, DAFOR, GRESS, Odysee, PADRE2, AD01, ADOL-F, IMAS, Tape-
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nade and OPTIMA90. Some of these codes use forward mode, some reverse mode

and some, such as ADIFOR, use a hybrid of the two in order to take advantage of the

reverse mode efficiency and the lower memory demands of the forward mode. AD is

an active area of research and codes to implement this technique are, at this point, not

very robust. In the CFD community, ADIFOR, TAF and Tapenade have been used in

forward mode to test their ability to obtain sensitivities from simple two-dimensional

CFD codes [64, 67] and ADIFOR has also been applied to a three-dimensional CFD

code [68,69]. However, to the knowledge of the author, AD has not yet been used for

aerodynamic shape optimization.

Finally, analytical differentiation consists on deriving the analytical expressions for

the sensitivities and introducing them to the original analysis code. These methods

are the most efficient and accurate, however, they are also the most difficult and time

consuming to implement because they require a complete knowledge of the original

analysis code and the physics of the flow. There are basically two methods used to

compute the sensitivities analytically: direct methods and adjoint methods.

In a CFD solver, the solution of the flow field is obtained when the governing

equations of the flow are satisfied, that is when the residuals of the governing equations

are equal to zero. In mathematical form

R(xj, yk(xj)) = 0 for j = 1, . . . , n and k = 1, . . . , p (3.30)

where R(xj, yk(xj)) represents the residuals of the governing equations of the fluid

flow, xj are the independent variables, i.e. the variables that represent the shape of

the airfoil and, yk are the fluid flow variables which depend on xj.

The sensitivities of a certain function, f(xj, yk(xj)), with respect to the indepen-



CHAPTER 3. AERODYNAMIC OPTIMIZATION 74

dent variables can be obtained as

δf

δxj

=
∂f

∂xj

+
∂f

∂yk

δyk

δxj

(3.31)

where indexes j and k imply summation over all values of repeated subscript and

j = 1, . . . , n and k = 1, . . . , p. ∂f
∂xj

and ∂f
∂yk

can be obtained from the definition of f .

δyk

δxj
is the only remaining term to obtain is δf

δxj
. To obtain this last term, equation

(3.30) is used. Since at the solution R(xj, yk(xj)) = 0, then at the solution

δR =
∂R
∂xj

δxj +
∂R
∂yk

δyk = 0 (3.32)

must also be satisfied. Since ∂R
∂xj

and ∂R
∂yk

can be obtain, the last equation can be

rearranged to obtain
δyk

δxj

= −
(
∂R
∂yk

)−1
∂R
∂xj

(3.33)

where j = 1, . . . , n, k = 1, . . . , p and ∂R
∂yk

is assumed invertible. Therefore, δyk

δxj
can be

obtained by solving the system of equations in (3.33) for each independent variable

yk. Then, once the vector δyk

δxj
for j = 1, . . . , n and k = 1, . . . , p is obtained, it can

be used in equation (3.31) to obtain δf
δxj

. The system of equations in equation (3.33)

to be solved for each yk contains the same number of equations as the system of

governing equations of the flow. Therefore, obtaining the sensitivities of a function

with respect to n independent variables is computationally equivalent to solve n times

the flow field. Therefore, the computational expense being similar to finite-differences

in forward mode. However, it is necessary to obtain the vector δyk

δxj
only once for each

shape and it can be used to obtain the gradient of any function with respect to

xj. Therefore, using this method, the necessary time to obtain the gradients of m

function is n times the time to obtain the fluid flow solution, where n is the number

of independent variables, i.e. design variables.
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The method described above is the direct analytical method. In most cases in

aerodynamics, there are more independent variables, i.e. the design variables in

the optimization problem, than functions for which the gradients are necessary. To

eliminate the dependence of the gradient computations on the number of independent

variables, the adjoint method was created. Introduced in the CFD community by

Jameson [55], the adjoint method differs from the direct method in that equations

(3.31) and (3.32) are joined to obtain

δf =
∂f

∂xj

δxj +
∂f

∂yk

δyk + ψT
k

(
∂R
∂xj

δxj +
∂R
∂yk

δyk

)
(3.34)

where ψT
k is free to take any value because it is multiplying a zero term. ψT

k is known

as the adjoint vector. Then, rewriting equation (3.33)

δf =

(
∂f

∂xj

+ ψT
k

∂R
∂xj

)
δxj +

(
∂f

∂yk

+ ψT
k

∂R
∂yk

)
δyk (3.35)

and using an adjoint vector such that

∂f

∂yk

= ψT
k

∂R
∂yk

(3.36)

equation (3.35) becomes
δf

δxj

=
∂f

∂xj

+ ψT
k

∂R
∂xj

(3.37)

where δf
δxj

can easily be solved. In this case, to obtain the gradient, the main concern

is to obtain the adjoint vector. To obtain the adjoint vector, the system of equations

in (3.36) needs to be solved. The system of equations in (3.36) is independent of the

independent variables and, therefore, it only needs to be solved once independently of

the number of independent variables. Furthermore, the system of equations in (3.36)

has the dimensions of the system formed by the governing equations of the flow field.
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Therefore, the cost of computing the gradient of f is similar to the computational

time to obtain the solution of the flow field and it is independent on the number

of independent design variables. On the other hand, an adjoint vector is needed for

each function for which the gradients want to be computed. In conclusion, the adjoint

method obtains the gradient of m functions respect to n independent design variables

in m times the computational time necessary to solve the governing equations of the

flow.

In this thesis, for all the problems treated, the number of design variables is larger

than the number of functions for which the gradients are necessary. Therefore, the

ideal choice would be to use the analytical adjoint method to compute the gradients.

However, the development of a CFD code that computes the gradients using the

adjoint method requires a thorough knowledge of the CFD code and, additionally, it

requires approximately one year to implement for a laminar Navier-Stokes code, [9].

Therefore, the adjoint method was considered to be beyond the scope of this project.

The second natural option would be to use AD in reverse mode. However, because

of the memory demands, the dimensions of the CFD code being used and the lack

of robustness of the AD tools, this method was also considered beyond the scope

of this project. Finally, there were four viable options: forward-differences (FD),

central-differences, complex-step differentiation and finally, AD using forward mode.

Forward-differences is the least accurate of the aforementioned methods, but it is the

most efficient and it is easily parallelized. Central differences is more accurate, but it is

two times more computationally expensive than FD, and it does not solve the step size

dilemma. Complex-step differentiation is accurate, but it is two to three times more

computationally expensive than FD [45, 64]. Furthermore, it is necessary to modify

the original analysis code. Finally, AD in forward mode gives an exact gradient, but

for CFD applications it has been noted that it is approximately as computationally
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expensive as complex-step differentiation. It also has higher memory requirements

than the other methods, and it requires modifications of the existing analysis source

code [64,67–69].

In the end, forward-differences was the method chosen to compute the gradient in

this thesis. The main reasons for this choice were: faster computation of the gradients

compared with complex-differentiation and forward AD, ease of parallelization and,

ease of implementation. To reduce the inaccuracy of the gradients, a step size study

will be performed to decide the most appropriate step size.

Once the method to compute the gradients has been decided, a code is created to

perturb each design variable of the airfoil with a small step. New meshes are created

for each perturbed airfoil and the different aerodynamic characteristics are computed

using SPARC for the new meshes. Finally, equation (3.25) is used to obtain the

gradients of the aerodynamic characteristics with respect to the control points of the

B-spline used as design variables. If the angle of attack or the Reynolds number are

used as design variables, then the program perturbs such variables in SPARC and

also computes the aerodynamic characteristics. For example, the gradient of the lift

coefficient with respect to the ith design variable will be obtained as

∂cl(x)

∂xi

∣∣∣
x=x0

=
cl(x0 + δi)− cl(x0)

δ
(3.38)

where in this case x0 represents the original shape and original mesh and x0 + δi

represents the new shape when the ith design variable is perturbed. Since for each

perturbed shape all aerodynamic characteristics are obtained, the gradient of lift,

drag and pitch moment with respect to the n design variables are obtained after n+1

analysis runs. Therefore, in this case, the computational cost is only proportional to

the number of design variables.



CHAPTER 3. AERODYNAMIC OPTIMIZATION 78

It must be noted that the analysis runs needed to compute the gradient are inde-

pendent of each other and, therefore, they can be solved in parallel. In order to take

advantage of this property and to further reduce the computational time necessary

to compute the gradients, a scheduling program for the parallel cluster is used during

the gradient calculations, namely Portable Batch System (PBS) [70]. Then, instead

of solving the analysis runs one by one, all the analysis runs are sent to PBS at once

and PBS allocates the necessary number of processors for each different analysis run

until the parallel cluster does not have any more processors free. If all analysis runs

are not able to be executed at the same time, they are saved in the PBS queue until

more processors are free and then, the remaining analysis runs are executed in those

new processors. By using PBS, the processors can be dynamically allocated and deal-

located thereby taking full advantage of the cluster capabilities when computing the

gradients. In this thesis, each analysis run uses 3 processors and the analysis program

is executed in a 16 processors cluster. Therefore, 5 analysis runs can be executed at

the same time, reducing by 5 the amount of time necessary to compute the gradients,

even though the CPU time is not reduced.

In summary, the gradients are computed following this procedure

Step 1 Given an original shape and grid, set k = 0

Step 2 Submit analysis to PBS and set k = k + 1

Step 3 If k ≥ 1, add a step, δ, to the k design variable

Step 4 Obtain the new airfoil shape

Step 5 Deform the original mesh according to the new airfoil shape

Step 6 Submit analysis job to PBS, set k = k + 1
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Step 7 If all the geometric design variables have been perturbed continue, else go to

step 3

Step 8 Wait until all analysis submitted to PBS are done

Step 9 Use cl, cd and cm from all the different analysis and equation (3.25) to obtain

gradients

3.5 Implementation

The different algorithms described above have been assembled to create a code for

aerodynamic shape optimization of airfoils at any Reynolds number and angle of at-

tack. Figure 3.6 shows a schematic of the implementation. The code can be simplified

as follows:

Step 1 Create an airfoil using the B-spline generator of section 3.1

Step 2 Create a structured multiblock grid to solve the airfoil generated in step 1

Step 3 Compute objective function and constraint of the optimization problem using

the fluid flow solver in section 3.2

Step 4 Compute gradient of objective function and constraints using forward-differences

as described in 3.4

Step 5 Solve the optimization problem using DOT

Step 6 If the optimization problem has converged STOP; if the optimization did not

converge yet CONTINUE

Step 7 Using the new design variables create new airfoil and mesh using sections 3.1

and 3.3 and go to step 3
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Note that once the aerodynamic characteristics are obtained a subroutine must be

created to used this information to obtain the desired objective function and con-

straints.

Figure 3.6: Flow chart of the aerodynamic shape optimization design tool
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Chapter 4

Applications

Once the computational design tool described in the preceding chapter has been

implemented in Fortran90, the design tool can then be used to aid in the design

of airfoils for aircraft at any Reynolds number. The only requirement is an initial

airfoil shape and a fluid mesh that yields accurate results at the Reynolds numbers

being studied. In this chapter, the computational tool is used to solve several optimal

design problems for application to the design of unmanned aerial vehicles (UAV) [1,5].

Section 4.1 focuses on the testing and validation of a fluid mesh. This fluid mesh will

then be used for all the following study cases because the flow characteristics are

similar for all the cases under consideration. Once a grid has been selected, the

optimization process begin. However, because forward-differences are being used to

compute the gradient, a parametric study of different step sizes is performed in section

4.2 in order to obtain the most accurate gradient possible. Furthermore, this data

could prove useful in the future to validate more advanced methods used to compute

the gradients, such as automatic differentiation or the adjoint method. Finally, section

4.3 contains the first test case under study. In this case, a lift-constrained minimum

drag airfoil is obtained. This initial example is used to validate the design tool’s
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ability to obtain minimum drag airfoils, and to study the performance of the different

optimization algorithms. Finally, section 4.4 takes advantage of the full capability of

the design tool to obtain a set of optimal shapes for several different stages of flight

of an airfoil morphing UAV.

4.1 Grid Study

Using the grid in [62] to successfully predict the lift and the drag of a NACA0012 at

Re = 3× 106 as a base line, a fluid mesh was generated to predict the lift and drag of

an airfoil at the Reynolds numbers of interest in this thesis. In this case, the Reynolds

numbers of interest are of the order of Re = 5×105, smaller than the ones used in [62].

Since experimental data exists for an Eppler 64 airfoil at Re = 2× 105 [59], the grid

studies are performed for the Eppler 64 at the aforementioned Reynolds number so

that numerical and experimental results can be compared. The grid obtained from

this grid study will be used throughout the thesis and it is assumed to be valid at

Re = 5 × 105 as well as for other airfoils in the same flow regime, because the flow

characteristics are similar.

The generated grid was refined 5 times in all directions and each refined grid was

used to solve the flow field. Tables 4.1 and 4.2 show the total lift, cl, total drag, cd,

friction drag, cdf , and pressure drag, cdp, values for the Eppler 64 airfoil computed

using the different grids at an angle of attack of 0 and 4 degrees respectively. In the

tables, grid 1 represents the coarsest grid and grid 5 represents the most refined grid.

Comparing the lift and drag coefficient between the different grids gives an esti-

mate of the grid resolution necessary to obtain a grid independent solution. Looking

at the evolution of the lift coefficient in table 4.1, the lift coefficient is similar for

grid levels 2 to 5 with oscillations of less than 5% around the value of 0.5. The lift
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Table 4.1: Lift and drag values for different grid refinements at α = 0◦, Rec = 2×105

Grid cl cd cdf cdp

1 0.39400 0.04200 0.00446 0.03754
2 0.48946 0.02760 0.01417 0.01343
3 0.51137 0.01755 0.01207 0.00549
4 0.50472 0.00957 0.00596 0.00360
5 0.47964 0.00780 0.00490 0.00290
Experiments, [59] 0.50 0.0125 -

Table 4.2: Lift and drag values for different grid refinements at α = 4◦, Rec = 2×105

Grid cl cd cdf cdp

1 0.76468 0.05826 0.00434 0.05392
2 0.89256 0.03978 0.01335 0.02644
3 0.92985 0.02408 0.01181 0.01227
4 0.90990 0.01417 0.00558 0.00859
5 div div div div
Experiments, [59] 0.925 0.01450 -

coefficient of 0.5 coincides with the experimental value for the lift coefficient and the

lift coefficient at a 4 degrees angle of attack follows a similar pattern. Table 4.2

shows how grids 2, 3 and 4 have a lift coefficient around 0.91, a value close to the

experimental value reported to be 0.925.

The total drag coefficient evolution with respect to the grid refinement in tables

4.1 and 4.2 shows larger changes compared to the lift coefficient changes with different

grids. To study the drag, instead of focusing on the total drag, the pressure and the

friction drag were studied independently, because SPARC computes the total drag

using

cd = cdf + cdp (4.1)
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Looking at the evolution of the pressure drag, it can be observed that it decreases

steadily from grid 1 to grid 5 with the largest changes occurring between the first

three grids. After grid 3 the pressure drag still decreases, but by small amounts when

compared with the initial changes. The friction drag evolution follows a similar pat-

tern from grid 2 to grid 5; however, the changes between grids are more pronounced.

The large change in the friction drag from grid 3 to grid 4 is produced by changes in

the behavior of the boundary layer as the grid is refined, and also by changes in the

characteristics of the laminar-to-turbulent transition as observed in the turbulent to

laminar eddy viscosity ratio plot in figure 4.1. At the low Reynolds number under

consideration, the laminar-to-turbulent transition happens around the middle of the

airfoil [59]. This transition considerably affects the behavior of the boundary layer,

and the lift and drag as discussed in [71, 72]. Looking at table 4.1, the large change

in the friction drag value does not appear again when the grid is refined further, so it

is assumed that the friction drag is also close to its converged value. For an angle of

attack of 4 degrees, grid 5 is numerically unstable; therefore, results are not reported.

The evolution of the total drag in tables 4.1 and 4.2 shows a strong dependence on

the friction drag, which is difficult to predict. However, at zero angle of attack, grids

4 and 5 yield similar results with less than a 20% change in total drag. Furthermore,

the evolution of pressure and friction drag at a 4 degree angle of attack is similar.

Therefore, it is assumed that grid 4 converged to a satisfactory result in predicting

drag.

Comparing the total drag with experimental data, it can be observed that, at a

zero degree angle of attack, the total drag is under predicted by 24% using grid 4,

while at a four degree angle of attack the total drag is under predicted by 4% using

the same grid. Both these errors are considered to be small because of the difficulty of

predicting friction drag. The discrepancy between experimental and numerical results
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is probably due to an under resolved boundary layer and an inaccurate prediction of

the laminar-to-turbulent transition. The results could be improved by introducing a

tripping source term to the Spallart-Allmaras model in SPARC in order to accurately

predict the correct laminar-to-turbulent transition, as discussed in [61].

In conclusion, since grid 4 yields good results for lift and drag predictions, and

since a coarse grid is preferable due to its lower computational cost, grid 4 is chosen

to be the base grid for optimization. A study of the computational domain is not un-

dertaken here because the domain size used is the same as the computational domain

size used in [62] where it was already proven that the grid was domain independent.

Grid 4 is shown in figure 4.2 and the detail of the grid around the airfoil and around

the leading edge of the airfoil are shown in figures 4.3 and 4.4. Grid 4 has 36 blocks,

24, 396 nodes, 157 nodes around the airfoil and the first node from the boundary of

the airfoil is at a distance of 4× 10−5, which results in a y+ value of 0.5.

4.2 Study of the Step Size Used to Compute the

Gradient

Once a grid is obtained for optimization, the optimization algorithm can already re-

ceive information of objective function and constraints. However, as discussed earlier,

the optimization algorithm also needs information on the gradients of objective func-

tion and constraints. Such gradients are computed using forward differentiation. The

value of the gradient of a function with respect to its ith variable is obtained using

forward differentiation as

∂f(x)

∂xi

∣∣∣
x=x0

=
f(x0 + δi)− f(x0)

δ
+O(δ) (4.2)
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Figure 4.1: Turbulent to laminar eddy viscosity ratio contour plot close to the Eppler
64 airfoil at a 4 degree angle of attack for grids 3 (above) and grid 4 (below)
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Figure 4.2: Grid 4 around the Eppler 64 airfoil
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Figure 4.3: Detail of grid 4 around the Eppler 64 airfoil
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Figure 4.4: Detail of the grid around the leading edge of the Eppler 64 airfoil
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where δi is the perturbation vector for the i variable and δ the step size. This method

to compute the gradients is subjected to the step size dilemma.

To obtain the optimal step size for the gradient calculations, the lift and drag

gradients for each design variable in the optimization problem are plotted versus step

sizes from 10−2 to 10−7 in figures 4.5 and 4.6. The figures show clearly the step size

dilemma. Up to a step size of 10−5 or 10−6, depending on the variable, the value of the

gradients seem to converge to a value for the gradient; then as the step size is reduced

further, the value of the gradients start to change again. This is due to numerical

errors in the subtraction and the fact that an iterative solver is used to solve the fluid

flow. The converged solution of the CFD solver is only accurate to a certain value,

in this case 10−9. From figures 4.5 and 4.6 it appears that the most appropriate step

size is 10−4, 10−5 or 10−6 depending on the variable. In this case, a step size of 10−5

is chosen for all the variables as the step size for gradient calculations.

4.3 Drag Minimization

An airplane in level flight must satisfy the following conditions,

Weight = Lift (4.3a)

Drag = Thrust (4.3b)

Therefore, it is desirable to obtain an airfoil that is able to satisfy a certain lift

requirement and, at the same time, has a minimum drag. From equation (4.3b),

minimum drag will result in a minimum thrust requirement, which in turn will result

in a more efficient airplane.

To test the performance of the design tool, the program is used to solve a drag
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Figure 4.5: Value of the drag coefficient gradient with respect to the decimal logarithm
of the step size used to compute the gradient using forward differences
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Figure 4.6: Value of the lift coefficient gradient with respect to the decimal logarithm
of the step size used to compute the gradient using forward differences
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coefficient minimization problem subject to a minimum lift coefficient requirement.

The design problem is to obtain an airfoil with minimum drag and a minimum lift

coefficient of 0.8, at a Re = 500, 000, and with a 2 degree angle of attack. Thickness

constraints are imposed on the geometry of the airfoil and bounds are also imposed

on the design variables. In particular, geometrical constraints are imposed to obtain

a minimum thickness of 1% of the chord as described in table 4.3. The bounds of

the design variables are presented in table 4.4, where the design variables are the

y coordinate of the control points of the B-spline that represents the airfoil, and

the numbering corresponds to the numbering in figure 4.7 with xLE representing

the distance between leading edge points. Notice that the variables x5 and x7 have

different bounds than the other variables. This is due to the method used to deform

the grid. If the same bounds are used, the mesh deformation algorithm creates a fluid

mesh with negative cells, and the analysis program is unable to solve the flow around

the airfoil. xLE also has different bounds. This is because of the different nature of

the variable in that xLE represents the distance between the two points at the leading

edge and, therefore, must always be positive.

Table 4.3: Geometric constraints of the design problem
Constraint Value
1 x1 − x11 ≥ 0.01
2 x2 − x10 ≥ 0.01
3 x3 − x9 ≥ 0.01
4 x4 − x8 ≥ 0.01
5 x5 − x7 ≥ 0.01

To solve the design problem, an Eppler 66 airfoil is used as the initial airfoil for

the optimization procedure. This airfoil was chosen because it is one of the airfoils

recommended for the design of low Reynolds number aircraft [59]. Previous to the
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Table 4.4: Lower and Upper bounds of the design variables
x1 x2 x3 x4 x5 xLE x7 x8 x9 x10 x11

Lower Bound -0.2 -0.2 -0.2 -0.2 0.0 0.005 -0.2 -0.2 -0.2 -0.2 -0.2
Upper Bound 0.2 0.2 0.2 0.2 0.2 0.05 0.0 0.2 0.2 0.2 0.2

Figure 4.7: B-spline representation of the Eppler 66 airfoil used at the initial airfoil
for the optimization algorithm

optimization, the lift and drag coefficients for the intial airfoil were computed to be

0.864 and 1.009×10−2 respectively. The lift and the drag were obtained using SPARC

with 3 processors on a 22 processor Linux cluster. The lift and drag coefficients were

obtained after approximately 45 minutes of CPU time. During the optimization,

the lift and drag coefficients are obtained to compute the objective function and

aerodynamic constraint using the same grid and number of processors. However, the

flow field is restarted from the last flow field solution, thereby enabling a reduction

in the number of iterations prior to convergence. This results in a reduction of 15
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minutes of CPU time. It can be observed from this discussion that most of the time

during the optimization will be spent in the evaluation of the objective function and

constraints.

Starting with the Eppler 66 airfoil as the initial design, the design problem was

solved using the three optimization algorithms described in chapter 2. The three opti-

mization algorithms converged to a solution with similar aerodynamic characteristics

as shown in table 4.5, with a discrepancy of less than 1%. The solution with the

smallest drag is obtained using the modified method of feasible directions (MMFD),

followed by the sequential linear programming (SLP) algorithm, and finally, the se-

quential quadratic programming (SQP) algorithm. All three methods obtain a similar

airfoil shape as illustrated in figure 4.8 and, in table 4.7, where the value of all design

variables at the optimal solution obtained with the different optimization algorithms

are shown. The optimal solution obtained with all three methods satisfies all aero-

dynamic and geometric constraints as shown in tables 4.5 and 4.6. From table 4.5, it

can be observed that the lift constraint is active, i.e. the lift coefficient is 0.8. This

was expected, since it is well known in the aerodynamic community that lift and drag

are opposing goals. From table 4.6, it can be observed that all geometric constraints

are active or near active. Therefore, it can be concluded that in order to obtain an

airfoil with minimum drag, the airfoil needs to be extremely thin. Note that, from a

structural point of view, this presents a challange and could prove to be problematic.

The three methods reduce the drag by almost 20% with respect to the original

airfoil. This reduction in the total drag is achieved by a reduction of 7% in the friction

drag and a reduction of approximately 32% in the pressure drag with respect to the

original airfoil. To analyze how the optimization algorithms achieve these reductions,

the pressure and friction coefficient are used. The pressure and friction coefficients
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Figure 4.8: Initial and optimal airfoil shapes for MMFD, SLP and SQP
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Table 4.5: Aerodynamic characteristics of the initial and optimal solution at Re =
500, 000 and α = 2

Eppler 66 MMFD SLP SQP
cl 0.864278 0.799998 0.799934 0.800065
cd × 102 1.008671 0.811443 0.812351 0.812701
cdf × 102 0.509051 0.471875 0.474183 0.470825
cdp × 102 0.499620 0.339568 0.338168 0.341876
L/D 85.68 98.59 98.47 98.45

Table 4.6: Value of the geometric constraint at the optimal solution
Constraint 1 2 3 4 5
Eppler 66 2.5000E-04 -3.2000E-02 -8.6000E-02 -9.6500E-02 -5.8500E-02
MMFD 9.3132E-10 1.8626E-09 1.8626E-09 -1.8626E-09 -1.7426E-02
SLP 2.3283E-10 2.2408E-06 -2.3115E-06 -6.6701E-06 -1.8815E-02
SQP -1.1642E-09 0.0000 1.8627E-09 -1.1317E-04 -1.7713E-02

are defined respectively as,

cp =
p− p∞
1
2
ρU2

∞
(4.4)

cf =
τw

1
2
ρU2

∞
(4.5)

where τw is the shear stress at the surface of the airfoil. Pressure and friction coeffi-

cients over the initial and the final airfoil surfaces of the three optimization algorithms

are plotted in figures 4.9 and 4.11. From the figures, it can be observed that the three

optimal solutions have almost the same pressure and friction coefficient distributions

over the airfoil surface.

Figure 4.10 shows the pressure coefficient distribution in the flow field around

both the initial airfoil and the airfoil obtained using the SQP method. From the

figure, it can be observed how the maximum pressure at the leading edge is reduced.
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Table 4.7: Value of the design variables at the optimal solution
x1 x2 x3 x4

Eppler 66 1.72500E-02 5.35000E-02 9.25000E-02 8.25000E-02
MMFD 1.32334E-02 3.33933E-02 6.21168E-02 5.30299E-02
SLP 1.27780E-02 3.29492E-02 6.42786E-02 5.68418E-02
SQP 1.37749E-02 3.06921E-02 6.29416E-02 5.43026E-02

x5 xLE x7 x8

Eppler 66 4.60000E-02 1.50000E-02 -2.25000E-02 -2.40000E-02
MMFD 2.74260E-02 5.30234E-03 -4.52642E-10 4.30299E-02
SLP 2.88151E-02 6.00970E-03 0.00000 4.68352E-02
SQP 2.77129E-02 6.26530E-03 -2.84868E-13 4.41894E-02

x9 x10 x11

Eppler 66 -3.50000E-03 1.15000E-02 7.45000E-03
MMFD 5.21168E-02 2.33934E-02 3.23338E-03
SLP 5.42763E-02 2.29514E-02 2.77802E-03
SQP 5.29416E-02 2.06921E-02 3.77485E-03

The reduction of the maximum pressure, together with a sharper leading edge, are

the responsible for the reduction in pressure drag. Since the leading edge is sharper,

the projection of the pressure in the x-direction which contributes to the pressure

drag is reduced. In addition, the pressure at the leading edge that contributes to the

pressure drag is further reduced by the reduction of the maximum pressure.

From figure 4.11, it can be seem that the friction drag is reduced in both up-

per (upper curve) and lower surfaces. The reduction in friction drag is due to: a

smaller wetted surface of the airfoil, and a reduction in the pressure gradient in the

x-direction. The new airfoil is thiner and therefore, has less area in contact with the

fluid flow. The reduction of the pressure gradient in the x-direction observed in figure

4.9 produces a reduction of the adverse pressure which makes the laminar boundary

layer more stable. A laminar boundary layer produces less friction drag.

The optimization problem outlined above was solved using three different opti-
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Figure 4.9: Pressure coefficient distribution at Re = 500, 000 and α = 2 over the
surface of the Eppler 66 and optimal airfoils using MMFD, SLP and SQP
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Figure 4.10: Contour plot of the pressure coefficient distribution at Re = 500, 000
and α = 2 over the Eppler 66 airfoil (above) and the optimal SQP airfoil (below)
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Figure 4.11: Friction coefficient distribution at Re = 500, 000 and α = 2 over the
surface of the Eppler 66 and the optimal airfoils using MMFD, SLP and SQP
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Figure 4.12: Contour plot of the velocity distribution at Re = 500, 000 and α = 2
over the Eppler 66 airfoil (above) and the optimal SQP airfoil (below)
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mization algorithms in order to compare the computational efficiency of each one of

these methods. The computational efficiency in this case is measured by the number

of function evaluations, i.e. calls to the analysis program, that are necessary in order

to achieve the optimum solution. A reduction in the number of calls to the analysis

program is considered to be the best measure of efficiecy in this case because the

analysis program used to evaluate objective function and aerodynamic constraints is

the most computationally expensive part of the process taking more thatn 95% of the

total computational time.

The SQP algorithm was shown to be the most efficient optimization algorithm

due to the fact that it required the lowest number of function evaluations, as shown

in table 4.8 and in the convergence plot in figure 4.13. The SQP method obtained the

optimum airfoil shape using the least number of iterations, i.e. gradient evaluations,

and without relying heavily on the line search - it required only 26 internal function

evaluations. In this thesis, the term internal function evaluaions refers to the number

of individual function evaluations performed during the optimization. This individ-

ual function evaluations are performed directly from the optimization algorithm and

they can not be parallelized, therefore the optimization algorithm should reduce the

number of internal function evaluations as much as possible.

Table 4.8: Number of function and gradient evaluations before optimum
MMFD SLP SQP

Iterations 26 17 10
Gradient evaluations 26 17 10
Individual function evaluations 231 25 26
Total function evaluations 543 229 146

The MMFD was executed for 26 iterations. It needed to perform 26 gradient

evaluations, and 231 internal or individual function evaluations during the line search.
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The number of internal function evaluations considerably reduced the efficiency of

the method, since these cannot be parallelized. The reason for the large number of

internal function evaluations in each iteration is that the lift coefficient constraint

must be satisfied at each iteration. As described in section 2, the MMFD algorithm

has to solve a Newton-Raphson problem in order to guarantee that the lift constraint

is active in the next iteration. This results in a large number of internal function

evaluations.

The SLP algorithm converged to the solution after 17 iterations. It needed to

perform 17 gradient evaluations and only 25 internal function evaluations. Therefore,

in this case, the SLP method is less efficient than the SQP, but more efficient than

the MMFD method. Even though the SLP is less efficient than the SQP method, it

is important to note the small number of internal function evaluations required. The

SLP method used 7 iterations more than the SQP method; however, the number of

internal evaluations is 25, one internal function evaluation less than the SQP method.

The reduction in the number of internal function evaluations is achieved by using

moving limits instead of a line search. Taking into account that more efficient ways

exist to compute the gradients of the objective function and constraints as discussed

in section 3.4 and that function evaluations are always expensive, the SLP has to be

considered as a good candidate for aerodynamic shape optimization.

Through careful observation of the convergence history in figure 4.13, it can be

noted that the SLP algorithm increases the objective function in the first iterations

instead of decreasing it. Then, from iteration 9 to iteration 17 the algorithm starts

to reduce the objective function until it reaches the optimum. The initial behavior

is due to a poor selection of the move limits. Initially, the move limits chosen are

too large to guarantee an accurate linear approximation of the objective function

and constraints. However, as the algorithm evolves, the move limits are reduced
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to the appropriate values. Therefore, even though the move limits techniques are

responsible for a reduction in the number of internal function evaluations, it is also

responsible for an increase in number of iterations required before the optimum is

reached. Therefore, the SLP method could be improved by implementing an efficient

method to obtain the initial move limits, for example the method discussed in [19].

The method in DOT used to reduce the move limits after the initial move limits are

selected seems to perform well in this problem. Once this technique is implemented,

the SLP algorithm could be as efficient as the SQP algorithm. Furthermore, to reduce

the number of function evaluations in the SQP algorithm, the line search could be

substituted with a moving limits methodology.

Figure 4.13: Convergence history plot of the drag minimization problem solved using
MMFD, SLP and SQP algorithms

In conclusion, in this case, the SQP method outperformed the SLP and MMFD

methods in computational efficiency. Therefore, among the three existing method
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the SQP method is the method recommended in this thesis. The SLP method is

also considered a good candidate for shape optimization if an efficient method to

compute the gradients exists. In case of using the SLP method, special care must be

taken when selecting the initial move limits. Finally, the MMFD is not recommended,

because even though it is capable of reaching the optimal solution, it requires a large

amount of internal function evaluations which cannot be parallelized, and this makes

the method highly computationally inefficient.

The results obtained from this study are not conclusive, given the small number

of cases studied, however they are useful to highlights the main advantages and some

improvements on the methods. To obtain more conclusive results, more cases should

be studied: a case where the initial design is infeasible, cases with different objective

function and constraints, etc. However, due to the computational expense of each

one of the optimization methods, the SQP method took 3 days and the MMFD took

10 days using a 22 processor Linux cluster to obtain a solution, more studies were

not undertaken. Finally, in order to test that the shape is a global optimum, a global

optimization algorithm should be used to solve the problem, or the problem should

be solved starting from different initial design.

4.4 Airfoil Morphing

To conclude the applications section of this thesis, the design tool is used to design a

set of airfoils for an airfoil morphing UAV for surveillance applications. The UAV has

the following characteristics: a takeoff weight of 400N , a chord length of 0.50m and

a wing area of 1.4m2. This aircraft will morph its airfoil shape in order to increase

its performance in each one of the different stages of flight. In general, the main

requirements for a surveillance UAV are: a rapid deployment, fast cruise from the
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deployment area to the surveillance area (and viceversa) and finally, low speed loiter

in the surveillance area. The design program created in this thesis is used here to

obtain the optimal airfoil shape at the two main stages of flight: loiter and cruise.

The velocity of the UAV, the angle of attack of the airfoil, and the minimum lift

coefficient at each one of the stages of flight are shown in table 4.9.

Table 4.9: Characteristics and requirements at each stage of flight
Velocity Air Density Re α cmin

l

[m/s] [kg/m3] [−] [◦] [−]
Cruise 50.0 1.006 1,450,000 2 0.2272
Loiter 20.0 1.006 582,000 2 1.4201

For loiter and cruise flight, the airfoil shape is obtained by solving a minimum

drag airfoil optimization problem subject to a minimum lift coefficient requirement.

This method is used because minimizing the drag and keeping the lift equal to the

weight of the aircraft will minimize the necessary thrust from the propulsive sys-

tem. This will increase the range and efficiency of the airplane. To make lift equal

to weight, a minimum lift requirement is used instead of an equality constraint to

make lift equal to weight. This is because, in order to obtain minimum drag, the

final design will most probably be close to the lift constraint, since lift and drag are

opposing goals. Additionally, the DOT package is design for inequality constraints

and introducing equality constraints will reduce the computational efficiency of the

optimization algorithms.

To solve the two problems, the Eppler 66 airfoil is used as the initial airfoil. The

solution of these two optimization problems is performed using the SQP method,

since it was proven to be the most computationally efficient method in section 4.3.

Tables 4.10 and 4.11 show the aerodynamic characteristics of the initial airfoil and the
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Table 4.10: Aerodynamic Characteristics of the initial and optimal airfoils at cruise
conditions, Re = 1, 450, 000 and α = 2

Eppler 66 (Cruise) Cruise
cl 0.89792 0.23154
cd × 102 0.73174 0.43632
cdf × 102 0.35605 0.32511
cdp × 102 0.37569 0.11121
L/D 122.7103 53.0666

Table 4.11: Aerodynamic characteristics of the initial and optimal airfoils at loiter
conditions, Re = 582, 000 and α = 2

Eppler 66 (Loiter) Loiter
cl 0.87129 1.42011
cd × 102 0.96626 1.28366
cdf × 102 0.48720 0.47715
cdp × 102 0.47906 0.80651
L/D 90.1703 110.6298

optimal airfoils for cruise and loiter flight conditions. Table 4.13 shows the value of

the design variables at the beginning and at the optimal solution for both problems.

In the first case, the design of the airfoil for cruise, the design tool obtained

the optimal airfoil after 9 iterations: 9 gradient evaluations and 24 internal function

evaluations, adding up to a total of 132 function evaluations. The design tool obtained

an airfoil with a drag of 0.43632×10−2; this is a reduction in drag of 57% with respect

to the initial design. The drag reduction is obtained mainly from a reduction of almost

80% in the pressure drag. The large reduction in pressure drag is obtained by reducing

the pressure peak over the airfoil as can be seen in figure 4.15. The friction drag is

also reduced as observed in figure 4.16, but by a smaller amount, because the shear

stress at the airfoil boundary is more difficult to reduce. The shape of the airfoil is
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plotted in figure 4.14. Comparing the original and final airfoil, it can be observed

that the reduction in drag is obtained from: a reduction in camber, a reduction in the

thickness of the airfoil and changes in the leading edge shape. By looking at the value

of the geometric constraints at the optimal solution in table 4.12, it can be observed

that all the constraints are active except close to the leading edge. This proves that

the optimization algorithm seeks a reduction in drag by reducing the thickness of the

airfoil, except at the leading edge where the reduction of the pressure gradient is more

important to guarantee that the boundary layer remains attached.

In the second case under study, the design of the airfoil for loiter, the design

tool obtained the optimal airfoil after 16 iterations: 16 function evaluations and 47

internal function evaluations, adding up to a total of 192 function evaluations. In

this case, the number of iterations has increased from 9 in the last case to 16. This

is due to starting the optimization with an infeasible initial design. At the end of the

optimization, the airfoil satisfies all aerodynamic and geometric constraints as shown

in tables 4.11 and 4.12, therefore proving that the design tool is able to solve the

design problem starting from any design, feasible or infeasible. The optimal airfoil

has the required lift coefficient of 1.42011 and a drag coefficient of 1.28366 × 10−2.

This represents an increase of 63% in the lift coefficient and an increase in drag of

33%. In this case, the drag is increased. This was necessary in order to guarantee

the lift constraint, because lift and drag are opposing goals and the initial airfoil has

a smaller lift than the minimum lift. However, the drag is increased by a relatively

small amount while the lift is inceased by a substantial 63%. Looking at table 4.11,

it can be observed that the increase in drag is mainly due to an increase in pressure

drag. This increase in pressure drag is due to the change in geometry and an also

to an increase in the pressure peak as shown in figure 4.17. On the other hand, the

friction drag remains fairly constant and it is even slighly reduced respect to the
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original airfoil, as shown in figure 4.18.

From the aforementioned results, several conclusions about the characteristics of

the set of optimal airfoil for an airfoil morphing UAV and the mechanisms necessary

to morph the airfoil for the morphing UAV can be reached. From figure 4.14 and

table 4.12, it can be observed that cruise and loiter optimal airfoils share a common

characteristic; they are both thin airfoils. In both cases, the thickness of the airfoil

is close to the minimum thickness constrained. Only at the leading edge, the airfoils

have a larger thickness than the minimum thickness constraint. The main difference

between the two airfoils is its camber. While, the cruise airfoil has an almost inex-

istent camber, the loiter airfoil has a maximum camber of around 10% of the chord.

Therefore, the airfoil morphing UAV will have an extreamly thin airfoil - almost a

plate - and two morphing mechanics. The first mechanism will be used to control

the camber of the airfoil by deforming the airfoil as necessary. The second morphing

mechanism will be used to control the thickness of the leading edge and it could be,

for example, an inflatable system.

Table 4.12: Value of the geometric constraint at the optimal solution

Constraint 1 2 3 4 5
Eppler 66 2.5000E-04 -3.2000E-02 -8.6000E-02 -9.6500E-02 -5.8500E-02
UAV Cruise -3.8883E-08 -1.5466E-04 -4.1525E-04 -3.1111E-03 -9.9205E-03
UAV Loiter 0.0000 1.8627E-09 1.8626E-09 -1.4236E-04 -3.7638E-02
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Figure 4.14: Shape of the initial design and the optimal cruise and loiter airfoils
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Figure 4.15: Pressure coefficient over the initial and optimal UAV cruise airfoil surface
at Re = 1, 450, 000 and α = 2
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Figure 4.16: Friction coefficient over the initial and optimal UAV cruise airfoil surface
at Re = 1, 450, 000 and α = 2
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Figure 4.17: Pressure coefficient over the initial and optimal UAV loiter airfoil surface
at Re = 582, 000 and α = 2
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Figure 4.18: Friction coefficient over the initial and optimal UAV loiter airfoil surface
at Re = 582, 000 and α = 2
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Table 4.13: Value of the design variables at the optimal solution
x1 x2 x3 x4

Eppler 66 1.72500E-02 5.35000E-02 9.25000E-02 8.25000E-02
UAV Cruise 2.38709E-03 5.32888E-03 2.00629E-02 2.66050E-02
UAV Loiter 2.65407E-02 6.29888E-02 0.11499 8.67088E-02

x5 xLE x7 x8

Eppler 66 4.60000E-02 1.50000E-02 -2.25000E-02 -2.40000E-02
UAV Cruise 1.96137E-02 5.09408E-03 -2.78720E-04 1.34881E-02
UAV Loiter 4.76382E-02 7.03649E-03 -2.85208E-13 7.65665E-02

x9 x10 x11

Eppler 66 -3.50000E-03 1.15000E-02 7.45000E-03
UAV Cruise 9.64760E-03 -4.82578E-03 -7.61295E-03
UAV Loiter 0.10499 5.29888E-02 1.65407E-02
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Chapter 5

Conclusions and Future Work

In this thesis, a design tool to optimize airfoil shapes for any flow regime and any stage

of flight has been developed. The design tool is developed by coupling: an optimiza-

tion package, DOT; a shape parametrization algorithm; a fully viscous Navier-Stokes

aerodynamic analysis code, SPARC; a mesh deformation algorithm, and; an algo-

rithm to compute the gradient of the objective function and constraints with respect

to the design variables. This tool was then used to solve several design problems and

to compare several optimization algorithms. A drag minimization problem subject

to minimum lift requirements was solved. In this case, the design tool was able to

obtain a 20% drag reduction with respect to the initial airfoil and was also able to

guarantee the lift requirements. The design tool was then applied to the design of an

aircraft with a morphing airfoil.

The drag minimization problem subject to a minimum lift requirement was used

to compare the performance of three gradient-based methods: the modified method

of feasible directions, sequential linear programming and, sequential quadratic pro-

gramming. The comparison of the performance of each one of these methods when

solving this problem led to the conclusion that all methods achieve the same optimum
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and that the SQP algorithm is the most efficient method in reducing the number of

iterations necessary to solve aerodynamic shape optimization problems. The SLP is

less efficient than SQP in reducing the number of iterations; however, it does not

need to perform a line search at each iteration thereby reducing the number of func-

tion evaluations necessary at each iteration. Finally, the modified method of feasible

directions is not recommended, because it requires a large number of iterations and

a large number of function evaluations at each iteration to obtain the optimum. In

the MMFD, the large number of function evaluations at each iteration is due to the

nature of the algorithm used, which requires that all active constraints in the current

iteration remain active during the next iteration. Therefore, it is concluded that se-

quential quadratic programming algorithms are recommended for aerodynamic shape

optimization. SLP algorithms could also be used, if an efficient method to obtain

the gradients exist. The SLP algorithm could be improved by introducing an efficient

methodology to obtain the initial move limits, since inaccurate initial move limit were

the cause of the computational inefficiency of this method. In the future, given that

the sequential linear programming algorithm achieved the optimum without using a

line search during the iteration, a sequential quadratic programming algorithm with-

out line search should be implemented and its performance should be compared to

the sequential quadratic programming algorithm with line search and the new SLP

algorithm with a methodology to obtain accurate initial move limits.

The design tool that has been developed has proven its efficiency in optimal airfoil

design by obtaining large improvements in performance over initial airfoil shapes.

However, the design tool is only able to optimize single element airfoil shapes, i.e.

airfoils without flaps or slots. Furthermore, the computational efficiency of the design

tool must be improved if more complex objects, such as wings, are to be optimized

in a feasible amount of time. In the future, several improvements to the programs
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should be undertaken to allow the developed design tool to be able to optimize:

multiple element airfoils, wings and, full aircraft configurations. Some of the possible

improvements to each of the algorithms used in the developed tool will be outlined

in the paragraphs that follow.

A B-spline is used to represent the shape of the airfoil. The B-spline representation

is used because it has the ability to represent a large variety of airfoils within a small

set of parameters. However, the shape representation method must be reformulated if

multiple element airfoils and three-dimensional bodies are to be optimized. In future

work, a CAD based parametrization technique should be used that will be able to

link the CAD model of the wing or aircraft to the design variables.

The design tool is used for the design of UAVs which fly at low Reynolds Numbers.

At low Reynolds numbers, viscous effects contribute greatly to the performance of

the airfoil, accounting for almost 50% of the drag. Therefore, a fully viscous Navier-

Stokes solver was used in this thesis in order to solve the flow; in this case SPARC [39].

At low Reynolds numbers, the boundary layer characteristics are affected by the

laminar-to-turbulent transition of the flow. A suitable turbulence model must be

used to account for this phenomenon. In the developed tool, a Spallart-Allmaras one-

equation turbulence model is used to account for the turbulence of the flow. However,

the laminar-to-turbulent transition is not properly predicted using this model. In the

future, the Spallart-Allmaras model should be improved by adding a tripping term.

Furthermore, the prediction of laminar-to-turbulent transition using other turbulence

models should also be investigated.

Further improvements of the analysis tool could include the implementation of a

new fluid flow solver. The fluid flow solver currently used, SPARC, uses a structured

multi-block mesh in order to solve the fluid flow. However, structured meshes are

difficult to create when working with complex geometries. In the future, to solve the
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fluid flow around more complex geometries, such as multi-element airfoils or wings, a

CFD code that uses an unstructured mesh should be used. The implementation of an

unstructured CFD code, will also affect the mesh deformation algorithm, which will

have to be implemented to suit the unstructured grid characteristics. Furthermore, an

adaptive discretization technique could be used to deform and reconstruct the mesh.

This technique is most suitable for unstructured meshes and could help to reduce the

dependence of the results on the quality of the computational mesh as noted in [73].

In the design tool of this thesis, forward-differentiation was used to obtain the

gradients. Forward-differentiation is easy to implement and yielded good gradient

approximations. However, forward-differences are computationally inefficient and in-

accurate compared to adjoint formulations. If computationally expensive shape op-

timization problems are to be solved - for example optimization of wings or a full

aircraft - an adjoint formulation needs to be implemented in the aerodynamic CFD

code. The adjoint formulation will increase the accuracy and efficiency of the gradient

calculations.

The goal of this project was to obtain a set of optimal airfoils for the different

stages of flight of an airfoil morphing aircraft. For this reason, the design tool was

developed to perform single point optimization, i.e. the airfoil is optimal only at

the specified flight conditions and, there is no guarantee of optimal performance at

other flight conditions. In conventional aircraft, where the airfoils do not morph, it is

desirable to design an airfoil that has the best possible performance at all the stages

of flight. In the future, the option of obtaining an optimal airfoil for a range of flow

characteristics could be implemented.

Finally, to design a truly optimal aircraft, all interacting disciplines of the aircraft

should be taken into account when the optimization process is performed. In order

to fully optimize an aircraft, a multidisciplinary design tool should be developed that
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takes into account not only aerodynamic considerations, but also those of structure,

propulsion and control.
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