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Abstract

Polymer electrolyte fuel cells (PEFCs) operate with a ternary mixture of fuel and reactants.

The majority of numerical models in the literature, including the in-house Open-source Fuel

Cell Simulation Toolbox (OpenFCST) software, use Fick’s law of diffusion which is only valid

for binary mixtures. An accurate multi-component mass transport (MMT) model account-

ing for both convective and diffusive transport is necessary to improve PEFC performance

predictions and assess the errors due to the use of Fick’s law. The focus of this research is the

implementation of a novel isothermal compressible MMT model. The new model will allow

OpenFCST to perform along the channel and possibly 3-dimensional PEFC simulations.

In the porous media of the fuel cell, the volume averaging method is applied to the equa-

tions resulting in an additional Darcy-Forchheimer term. Diffusion coefficients and dynamic

viscosities of the species are calculated using Chapman-Enskog theory. The partial dynamic

viscosity of the gas species are calculated using either Wilke’s or Kerkhof and Geboers’

model. The MMT model is validated by comparing results to several benchmark prob-

lems, including a Stefan tube problem. The Stefan tube solution showed a maximum molar

fraction error of 0.007 (1.6%) compared to the analytical Maxwell-Stefan solution, which

is considered to be within an acceptable range. Finally, the MMT model is coupled with

electron and proton transport, and electrochemical reaction equations in order to develop a

PEFC cathode model. Performance predictions of the multi-component and Fick’s cathode

models are compared to show the effect of the improved model.

Keywords: polymer electrolyte fuel cell, finite element method, isothermal, compressible,

multi-component convective-diffusive mass transport, Darcy-Forchheimer
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“I have come to believe that the whole world is an engima, a harmless enigma that is made

terrible by our own mad attempt to interpret it as though it had an underlying truth”

- Umberto Eco
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T
B̂))

δ Variation operator

∇s Symmetric gradient, i.e. ∇s =
1
2

(
∇+∇T

)
⊗ Dyadic product between two vectors, i.e. a⊗ b = abT

dh Hydraulic diameter, [cm]

S Backwards step height, [cm]

xv



Uavg Average velocity, [cm s−1]

x1 Lower reattachment length for backwards channel step flow, [cm]

Subscripts and Superscripts

α,β Species indices

ˆ Above character (i.e. Â) represents a tensor
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Chapter 1

Introduction

1.1 Motivation

In recent years the need to reduce carbon emissions to mitigate climate change has been

a growing concern. Although, it cannot be said that there has not been resistance. For

instance, in 2011 Canada announced that it was withdrawing from the Kyoto Protocol out

of fears of the effect to the Canadian economy [3]. No matter what side a person takes on

the issue of climate change, fossil fuels are a non-renewable resource and one day they will

be depleted. For this reason, alternative energy resources need to be investigated to find

better and more efficient energy sources. A problem that plagues some alternative energy

sources, like solar and wind energy, is that they cannot provide a consistent source of power.

Instead they require efficient energy storage methods and should be used as a hybrid system

[4]. One possibility to integrate renewable energy and storage, is to use solar and/or wind

electricity to produce hydrogen via water electrolysis. This hydrogen could then be used in

fuel cell vehicles to eliminate transportation emissions. One reason to use hydrogen as the

form for energy storage instead of batteries is because of their higher energy density.

Fuel cells work by producing electrical energy directly from a chemical reaction. This

leads to less stages for energy loss, and results in greater efficiencies than that of a combustion

engine [5, 6]. Fuel cells vary in type based on factors such as the temperature, electrolyte, and

fuel used. Polymer Electrolyte Fuel Cells (PEFCs) have shown considerable promise. They

have high efficiencies, fast refueling times, and are capable of operating at low temperatures.

For these reasons, PEFCs are considered a viable option for applications to the automotive

industry. Current fuel cell vehicles commercially produced include the Hyundai Tucson

FCEV, Toyota Mirai, and Honda Clarity. As well, PEFCs are being investigated for use in

laptops [7], airplanes [8, 9], and forklifts [10].

One of the major challenges with PEFCs is the associated fabrication cost. This is

because PEFCs run at low temperatures, and as such require platinum as a catalyst for the
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chemical reaction to occur. For this reason, one major focus of current research is reducing

the amount of platinum required while maintaining performance [11, 12]. One day the use

of platinum as a catalyst may not even be necessary as some researchers are even investing

other possible catalysts for PEFCs [13–15].

PEFC research based entirely on experiments becomes very costly, due to the platinum

and other materials required for testing different configurations to find a more efficient so-

lution. As well, due to the small scales at which the processes take place it is currently

impossible to directly observe some of the fundamental phenomena that occurs in a fuel

cell. This is where numerical modeling can be advantageous in PEFC design. Simulations

can be run to test different design parameters and find an optimal solution so only a few

experiments have to be done based on the simulation results.

Modeling a PEFC is a multi-physics and multi-phase problem. Equations for the different

aspects of a PEFC including the electrochemistry, mass transport, heat transfer, and liquid

water transport are all coupled together. For this reason, it can be difficult to find an optimal

design using experiments alone. As one parameter may improve a PEFC in certain aspects it

may also inhibit others, for this reason a balance must be found. The Open-source Fuel Cell

Simulation Toolbox (OpenFCST) [16, 17] has been developed to account for these different

coupled equations. OpenFCST was originally developed by Secanell [18], and has been

improved to include the effects of catalyst layer (CL) structure [19], multiple kinetic models

[20, 21], non-isothermal two-phase transport [22–24], and different aspects of mass transport

[25, 26]. This work aims to improve OpenFCST by implementing a multi-component mass

transport model to better predict the effects of mass transport losses in a PEFC.

The losses of a PEFC can be broken into three regions, the kinetic, ohmic, and mass

transport losses. This is shown in Figure 1.1. At low overpotentials, kinetic losses dominate.

Kinetic losses are the result of the need to overcome the activation energy required for the

chemical reactions to occur. Ohmic losses occur at moderate overpotentials, and are due to

ionic and electronic conduction losses. Mass transport losses are the result of the combination

of two factors: 1) the inability to provide fuel and oxidant fast enough to the electrochemical

reaction site, (called “starvation”), and 2) the increased production of water leading to liquid

water accumulation in gas pores thereby blocking gas transport (called “flooding”). These

two factors determine the limiting current of a PEFC, and for this reason it is an important

aspect that needs to be accurately modeled for optimal PEFC design. To do this, an accurate

model for the multi-component transport was implemented to determine the transport of

the different gas species in a PEFC.
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Figure 1.1 – PEFC typical performance curve illustrating the three main regions of operation:
kinetic, ohmic, and mass transport

1.2 PEFC Background

A combustion engine works by running a hydrocarbon combustion reaction to produce heat.

This heat is then transformed into mechanical work. If electrical power is the end goal, then

this mechanical work must then be converted to electricity. Each of these stages results in a

loss of energy making the overall process very inefficient. Alternatively, a PEFC operates by

transforming hydrogen and oxygen into water and the byproduct of the reaction is electricity.

Due to this direct conversion from chemical to electrical energy there are less stages for energy

loss to occur and the overall process is much more efficient than a combustion engine.

The overall reaction that occurs in a PEFC is expressed as:

H2 +
1

2
O2 ⇌ H2O (1.1)

This reaction alone does not produce electrical power, instead the reaction must be split into

two electrochemical half cell reactions. That way electrons are formed as an intermediate

product that can be used to produce electrical power. This is possible through the use of
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Figure 1.2 – Basic operation of a PEFC. Reprinted with permission [2]

an electrolyte. An electrolyte allows protons to pass through but prevents the electrons

from doing so. For this reason, the electrons need to take a different path to the reaction

site. Through this path they can be used to produce electrical power before completing the

overall chemical reaction. In a PEFC, these two electrochemical half cell reactions occur on

each side of the PEFC, the anode and cathode, and are separated by a polymer electrolyte

membrane (PEM). This process is shown in Figure 1.2.

Hydrogen is supplied on the anode side where it diffuses through the anode’s gas diffusion

layer (GDL) and microporous layer (MPL). The hydrogen then reacts in the anode’s CL

producing protons and electrons as shown in the reaction:

H2 ⇌ 2H+ + 2e− (1.2)

This reaction is called the hydrogen oxidation reaction (HOR). The protons are able to

diffuse through the PEM, typically Nafion R⃝, a sulfonated tetrafluoroethylene polymer. As

mentioned previously the PEM is an electrolyte, thus the protons are conducted through

while insulating electron transport. Instead, the electrons travel in the opposite direction

and pass through a circuit where they can be used to produce electrical power.

Oxygen, typically in the form of air, is supplied on the cathode side. Similar to hydrogen,

the oxygen diffuses through the cathode’s GDL and MPL. At the cathode’s CL the oxygen,
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protons, and electrons combine producing water, as shown in the reaction:

1

2
O2 + 2H+ + 2e− ⇌ H2O (1.3)

This reaction is called the oxygen reduction reaction (ORR). The water produced then

diffuses through the cathode’s MPL and GDL where it is removed from the PEFC through

the cathode channel.

Although the GDL and MPL are not directly involved in the electrochemical reaction they

increase the overall performance of a PEFC. GDLs are typically made of carbon paper, and

the MPL consists of carbon black nanoparticles and polytetrafluoroethelyne (PTFE) coated

on top of the GDL. As well, the GDL is typically treated with PTFE to give it hydrophobic

properties. This ensures that water is removed from the layers to reduce “flooding” effects.

More information on the production process for GDLs can be found in [27].

The GDL provides a support to the thinner layers. As the name implies the GDL helps

the gases evenly distribute as they diffuse to the CL. This reduces losses as more oxygen and

hydrogen is able to reach the CL reaction sites below the bipolar plate. The MPL is not a

requirement for a fuel cell to operate, however the GDL and CL have pores on the scale of

10 to 30 µm and 10 to 100 nm respectively [28]. The MPL reduces contact resistance and

encourages liquid water transport by having pores at an intermediate size in comparison to

the two layers. Further, the CL is very delicate because it has a thickness of 10 to 50 µm [28].

The GDL provides structural support as it has a thickness on the order of 100 to 400 µm
[28].

1.3 Literature Review

Most models can trace their roots to the 1-dimensional (1D) models developed by either

Springer et al. [29] or Bernardi and Verbrugge [30]. These early models were reasonably

detailed and could determine the performance of a fuel cell. The problem is that they are

1D models, and 2D effects such as channel geometry cannot be considered. Parameters

for these early models were possibly curve fitted to experimental data. This is a problem

because differences between the results of the model and experimental data could be due to

the assumptions used. By curve fitting a parameter may be changed to an unrealistic value

to account for some other effect not being accounted for. As a result, it can be difficult to run

optimization studies as the model may no longer be valid outside of the data it was fitted to.

For this reason, greater emphasis has been placed on numerical models based on governing

equations that physically describe the true geometry and physical phenomena that occurs

inside a fuel cell. These governing equations that describe fuel cell operation are typically
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nonlinear, multi-physics, multi-phase models that describe the most salient physical aspects

in a fuel cell.

One reason that 2D models are attractive when modeling different behaviour in a PEFC

is the computational expense compared to 3D models. 2D models can use anywhere from

1000 to 10 000 elements, while 3D models typically require 100 000 to a few million elements

[31]. Figure 1.3 displays the two domains that can be considered in 2D PEFC simulations.

Through the channel 2D simulations [32–35] have the benefit of possibly only considering

the porous media domain and using symmetry boundary conditions to only represent half

of the channel and bipolar plate region. Since only the porous domain is considered, the

boundary condition used at the GDL-channel interface is a constant density boundary con-

dition. This is problematic because as the fuel progresses through the channel it will be

consumed, resulting in less reactant being available downstream. To accurately predict the

consumption of fuel along the channel an accurate mass transport model is required. This

can be difficult because usually one set of governing equations valid for the entire domain

is desired. So, the model must be capable of describing the transport in both the channel,

where convection dominates, and the porous layers, where diffusion dominates.

Figure 1.3 – 3D schematic of one channel of a PEFC. The red rectangle displays the through
the channel 2D domain, and the green rectangle displays the along the channel 2D
domain
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1.3.1 Mass Transport in a Porous Media

Fick’s second law of diffusion was first derived by Adolf Fick in 1855 [36] and can be expressed

as:
∂Cα

∂t
= ∇ · (CtDαβ∇xα) (1.4)

where index α represents the species, Cα is the concentration of the species (mol cm−3), t

is time (s), Ct is the total concentration of the mixture (mol cm−3), Dαβ is Fick’s diffusion

coefficient (cm2 s−1), and x is the molar fraction. Fick’s law of diffusion is meant for de-

scribing diffusion of binary mixtures. Only for infinitely dilute multi-component mixtures

is Fick’s law appropriate to approximate diffusion in a multi-component mixture [37]. This

assumption assumes that the species are extremely diluted in a solvent, resulting in the di-

luted solute species only interacting with the solvent. This assumption is typically used in

fuel cell modeling. As a result, several models still use Fick’s law for the determining the

mass transport [38–42].

The more generalized Maxwell-Stefan model for diffusive transport can be expressed as

[43, 44]:

− Ct∇xα =
N∑

α ̸=β

xαNβ − xβNα

Dαβ

(1.5)

where Ct is the total concentration (mol cm−3), N is the molar flux (mol cm−2 s−1), and

Dαβ is the Maxwell-Stefan diffusion coefficient (cm2 s−1). The Maxwell-Stefan equations

are more accurate for a multi-component mixture because they account for the interactions

between all the species. These extra interactions, not accounted for by Fick’s law, can result

in unintuitive diffusive transport phenomena; i.e. reverse diffusion, osmotic diffusion, and

a diffusion barrier [45]. Reverse diffusion occurs when a species diffuses from low to high

concentration gradient, the opposite of what Fick’s law describes. Osmotic diffusion occurs

when diffusion occurs even though no concentration gradient is present. Finally, a diffusion

barrier occurs when no diffusion occurs, even though there is a concentration gradient. A

good example of these phenomena was shown in experiments performed by Duncan and Toor

[46]. In the Duncan and Toor experiment, osmotic and reverse diffusion occurred because

one of the gas species was “pulled” by another as it diffused from a high to low concentration

gradient.

Although more complex to implement, resulting in increased computational time and

storage, the Maxwell-Stefan equations will typically lead to a more accurate solution than

Fick’s law. This has been shown to be true in other fields, such as membrane distillation as

studied by Banat et al. [47]. In the case of PEFCs, Lindstrom andWetton did a mathematical

analysis of the gas mixture in the GDL of a PEFC and found that the results using Fick’s

law and the Maxwell-Stefan equations only differed by a few percent [48]. Mart́ınez et al.
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investigated the difference in results of the Maxwell-Stefan equations and the approximated

multi-component (AMC) model, which is based on Fick’s law. Mart́ınez et al. found that

the maximum error between the two results was at most 5% [49].

The dusty gas model (DGM) has been proposed at least five times throughout the years

[50], Evans et al. [51], and Mason and Malinauskas [52] are the most commonly associated

with the DGM. When the total pressure is uniform the DGM is expressed as [53]:

− 1

RT
∇Pα =

N∑
α ̸=β

xαNβ − xβNα

Dαβ

− Nβ

DK
β

(1.6)

where R is the ideal gas constant (8.314× 107 g cm2 s−2K−1mol−1), T is the temperature

(K), Pα is the pressure of species α (g cm−1 s−2), and DK is the Knudsen diffusion coefficient

(cm2 s−1). Interestingly in the case of solid oxide fuel cells (SOFCs), Suwanwarangkul et al.

determined Fick’s law better described diffusive transport compared to the Maxwell-Stefan

equations, and found the DGM to be the most accurate [54]. However, Vural et al. has

criticized Suwanwarangkul et al. for assuming argon’s molar fraction to be constant, and for

using the same tortuosity fitting parameter for each model instead of fitting tortuosity to

each model individually [55]. Vural et al. instead found the results from the Maxwell-Stefan

equations and the DGM to be comparable with the tortuosity having a substantial effect on

differences [55].

The DGM is considered an extension of the Maxwell-Stefan equations to include Knudsen

diffusion. In recent years, some researchers have begun to reject the DGM [56–58], after

Kerkhof pointed out a self-consistency issue in the DGM where viscous forces were accounted

for twice [59]. In the same article that Kerkhof criticized the DGM he went on to develop

his own model, called the binary friction model (BFM) [59], based on the Lightfoot friction

model [60]. For isothermal gases, Kerkhof’s BFM is expressed as:

1

Pt

∇Pα = RT
N∑

α ̸=β

Φαβ
xβNα − xαNβ

PtDαβ

−

(
DK

β +
K̂

κβ

)−1
RT

Pt

Nβ (1.7)

Φαβ =

{
1 in the continuum regime
Λαβ

r0
in the Knudsen regime

(1.8)

κβ =
η0β

Pt

∑N
k=1 xkξβk

(1.9)

ξαβ =

[
1 + (η0α/η

0
β)

1/2(Mβ/Mα)
1/4
]2

[8(1 +Mα/Mβ)]
1/2

(1.10)

where Pt is the total pressure (g cm−1 s−2), Λ is the average mean free path (cm), r0 is

the pore radius (cm), K̂ is the intrinsic permeability (cm2), η0β is the dynamic viscosity of
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species β, and M is the molar mass (gmol−1). The BFM includes intermolecular diffusion,

as well as Knudsen and viscous wall friction terms [59]. Fimrite et al. modified the BFM into

the binary friction membrane model (BFM2) to specifically describe transport of water and

protons in perfluorosulfonic acid (PFSA) membranes, including Nafion R⃝ [61]. Pant et al.

pointed out possible shortcomings with the model when applied to transport in capillaries.

This is because BFM applies Darcy’s law, during its derivation, which assumes no-slip even

though diffusion slip would be present in capillaries. As well, the use of Darcy’s law results

in the assumption that the mass and molar average velocities must equal [58]. Pant et al.

went on to develop a modification to the BFM, the modified binary friction model, to correct

for these issues.

When a momentum equation is included in a porous media the simplest equation to use

is Darcy’s law. Henry Darcy formulated Darcy’s law based on experimental results in 1856

[62]. Darcy’s law is expressed as:

∇P = −ηK̂−1
v (1.11)

where v is the mass-averaged velocity vector (v =
∑
wαvα) of the mixture (cm s−1) and η

is the dynamic viscosity of the mixture (g cm−1 s−1). Darcy’s law describes the laminar flow

of a fluid through a porous medium. Although it is based on experimental data, it has been

derived from a theoretical basis by Whitaker [63].

Darcy’s law clearly results in a linear relation between velocity and pressure. This result

however is only valid in low flow regimes when the Reynolds number is less than 1. A correc-

tion can be applied for high velocity flow to account for the nonlinear relation between pres-

sure and velocity. In this case, equation (1.11) is modified to become the Darcy-Forchheimer

law, and it is expressed as [64, 65]:

∇P = −ηK̂−1
v + β̂ρ|v|v (1.12)

where ρ is the density (g cm−3) and β̂ is the Forchheimer correction tensor (cm).

For high porosities, ε > 0.6 [66], and if viscous effects within the fluid need to be consid-

ered Brinkman’s equation [67, 68] can be used:

∇P = −ηK̂−1
v + η̃∇2v (1.13)

where η̃ is the effective viscosity (g cm−1 s−1). The high porosity required makes this prob-

lematic for most porous media, as the porosity of porous media is typically less than 0.6

[66]. Another issue with Brinkman’s equation is the effective viscosity because this is not a

typical parameter known. One method to remedy this, which was done by Brinkman, is to

assume that η̃ ≈ η, however this is generally not true [66].
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1.3.2 Gas Channel Effects on Mass Transport

The gas channels are used to transport the fuel and oxygen to the fuel cell and remove water

from the fuel cell. By considering the channel in the domain of the simulation it allows

for the ability to account for this oxygen depletion along the channel. As well, different

channel designs are advantageous over others depending on what is required for increased

performance. For instance, serpentine channels are beneficial when effective water removal

is required [69]. Although there are benefits to including the channel in a PEFC model,

the main issue is the resulting governing equations required. In a channel the transport

is convection dominated, while in the porous layers transport is diffusion dominated. This

makes it difficult to select appropriate governing equations to describe these two different

domains for mass transport. One approach is to use different equations in the different

domains, while the second is to use governing equations that are valid in all domains.

Berning et al. applied the first approach to solving a non-isothermal PEFC in 3D [70].

They considered the membrane to be impermeable so the transport in the cathode and

anode was decoupled. They used the Navier-Stokes equations to describe the flow of the

gas mixture in the channel. In the porous layers they argued that the momentum equation

reduces to Darcy’s law, and used the Maxwell-Stefan equations to describe the transport of

the individual species. Berning and Djilali used this same set of transport equations when

they later also included phase change in their model [71]. This approach is not limited

to simplifying to Darcy’s law in the porous layers. For instance, Gurau et al. modeled a

2D MEA using the Navier-Stokes in both the channel and porous layers domain [72]. In

the porous layers, the Navier-Stokes equations were volume averaged and a source term

for the frictional losses from Darcy’s law was included. They then used Fick’s diffusion to

describe the transport of the individual species. What Gurau et al. did differently was have

three separate transport equations for different species only valid in different domains of the

PEFC. As a result there was an overlapping of two of the transport equations in the CL of

the anode and cathode of the PEFC. When using governing equations only valid in specific

sub-domains care must be taken when handling the internal and external boundaries [31].

Using a single set of governing equations valid in all domains is not significantly different.

The main difference is that the same momentum equation is solved in all domains. In the

porous layers the Navier-Stokes equations are volume averaged and an additional source

term representing the frictional drag from Darcy’s law is included. The Stefan-Maxwell or

generalized multi-species Fick’s law can be used to determine the transport of the individual

species as done in [73–77].

For the two approaches above, most researchers have used commercial software for mod-

eling a PEFC with the Navier-Stokes equations. Commercial software is typically easier
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to use and implement than codes built in-house, as a coding background is not a major

requirement. The problem with using commercial software is that a person may not know

the exact form of the equations being solved, or how they are solved. This can lead to

confusion, as researchers may write the compressible continuity equation and Cauchy mo-

mentum equation but refer to it as the incompressible Navier-Stokes equations as is the case

in [70, 73, 75]. For reference, the compressible continuity equation and Cauchy momentum

equation (steady-state and neglecting body forces) are:

∇ · (ρv) = 0 (1.14)

∇ · (ρv ⊗ v) = −∇P +∇ ·
(
η(∇v + (∇v)T )

)
(1.15)

where ρ is the density of the mixture (g cm−3), while the incompressible form used in the

Navier-Stokes equations (steady-state and neglecting body forces) are:

∇ · v = 0 (1.16)

ρ(v · ∇)v = −∇P + η∇2v (1.17)

This can make it difficult for a reader to actually know which equations were actually im-

plemented. One example of this problem is Berning and Djilali, when using the commercial

software CFX, referred to the Cauchy momentum equation as the “momentum equation for

an incompressible Newtonian fluid” [71]. Commercial code is so prevalent among researchers

that a review of modeling in PEFCs by Siegel only discussed OpenFOAM “as an alternative”

[31]. For this reason, the use of an in-house built code, like OpenFCST, allows a researcher,

and others, to know the exact form of the equations implemented.

From the above discussion, when dealing with the channel no matter which of the two

approaches are selected the Navier-Stokes equations have been used in the channel to describe

the gas mixture. For the porous layers then either a volume averaged form of the Navier-

Stokes equations with an additional Darcy source term, or a simplified momentum equation

to Darcy’s law is used. The typical choices for modeling the individual species have been

Fick’s law or the Maxwell-Stefan equations, however the DGM or the BFM could also be

used.

In 2005, Kerhof and Geboers proposed a new model to describe the multi-component

transport [1, 78]. This novel approach has a continuity and momentum equation for each

gas species, instead of the mixture. These equations were derived with the intent to account

for phenomena that the current method cannot account for. An example, would by counter-

flow types of transport, where different species are moving in opposite directions. These

equations are expressed for species, α, as:

∂ρα
∂t

+∇ · Fmassα = 0 (1.18)
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∂

∂t
(ραvα) = −∇ · F̂momα −∇ · (PαÎ− τ̂αβ) + F α −Dthermα +Dα (1.19)

Fmassα = ραvα (1.20)

F̂momα = ραvα ⊗ vα (1.21)

τ̂αβ = 2
N∑
β

ηαβ
2

(
∇vβ + (∇vβ)T −

2

3
(∇ · vβ )̂I

)
(1.22)

Dthermα =
1

Pt

N∑
β=1

PαPβ

Dαβ

(
DT

α

ρα
−
DT

β

ρβ

)
∇ lnT (1.23)

Dα =
N∑

β=1

PαPβD̂αβ(vβ − vα) (1.24)

D̂αβ = (PtDαβ)
−1Î (1.25)

where t is time, Î is the identity tensor, τ̂ is the viscous stress tensor, F α is an external

body force vector field, Pt is the total pressure, D
T is the multi-component thermal diffusion

coefficients, and T is the temperature. These equations are similar to the compressible

continuity and Cauchy momentum equation shown earlier, however since they have to be

solved for each individual species this can make the problem computationally expensive as

more species are included.

This has not been met without controversy, as Mills and Chang [79] criticized the work of

Salcedo-Dı́az et al. for using Maxwell-slip over diffusion slip. Mills and Chang then went on

to show that the classical approach, where the Navier-Stokes equations for the mixture with

Fick’s diffusion for the H2O-Air, was valid. Faliagas has also criticized Kerkhof and Geboers’

model [80]. As mentioned in a reply from Kerhof [81], Faliagas goes back and forth between

arguing for individual momentum equations and trying to retain the classical approach.

Faliagas does remark that Kerhof and Geboers’ model needs to be backed by numerical

experimentation to determine its validity and the possibility of numerical instability [80]. To

the best of the author’s knowledge no one has implemented Kerkhof and Geboers’ model in

a porous media, and only Salcedo-Dı́az et al. [82] has applied it to a Stefan tube problem.

Based on this discussion, when including the channel into PEFC modeling there are not

a large amount of options available. The approach taken by others has typically been to use

the Navier-Stokes equations for the mixture and Maxwell-Stefan or Fick’s law to describe

the transport of the individual species. A novel model by Kerhof and Geboers has been

proposed which has not been validated in porous layers or PEFC modeling. Outside of

PEFC modeling, Kerkhof and Geboers’ model has not been thoroughly tested to answer

critical questions such as:

1. Can the equations be solved numerically?
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2. What boundary conditions are appropriate?

3. Do the results make sense?

By implementing Kerhof and Geboers’ model in OpenFCST it can be tested to determine its

validity and numerical stability in PEFC modeling, as well as for more general applications.

1.4 Contributions

The major contributions made in this thesis towards PEFC modeling literature are:

1. Developed and validated a novel multi-component mass transport model,

2. Developed a PEFC through the channel cathode model accounting for multi-component

effects and highlighted key differences with previous models,

3. Developed an along the channel compressible, multi-component model to study along

the channel concentration changes.

1.5 Thesis Outline

This thesis is organized into five chapters. Chapter 1 introduced the reader to PEFCs,

and described their importance, applications, and challenges. The need for accurate models

describing PEFCs is highlighted. Background was provided, giving the reader a basic under-

standing of the operation of a PEFC. As well, an overview of the past and present research

in modeling mass transport in PEFCs was discussed. Chapter 2 discusses the governing

equations and simplifying assumptions. Closure relations are provided for calculation of gas

species properties. Detailed derivations of the volume averaging, linearization, and finite

element weak formulations required to numerically solve the governing equations are given.

Chapter 3 validates the implementation of the governing equations against five benchmark

tests that test all aspects of the mass transport model. Thus showing that the equations were

implemented correctly and accurately predict known problems and their solutions. Chapter

4 discusses the coupling to PEFC kinetics, and simulations of the cathode are performed.

These simulations compare the new mass transport model to the previously used Fick’s

model in OpenFCST. As well, simulations are performed along the channel. This will allow

for the effects of fluid flow in channels to be included in PEFC modeling. Finally, chapter 5

presents final conclusions of this thesis and provides suggestions for future research in mass

transport of PEFC modeling.
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Chapter 2

Mass Transport Governing Equations

2.1 Introduction

In 2005, Kerkhof and Geboers developed a new formulation for mass transport [1, 78].

Starting from the Boltzmann equation, an extension to Cauchy’s momentum equation was

developed for each gaseous species in a mixture. The governing equation for species α is

given by:
∂ρα
∂t

+∇ · Fmassα = Sα (2.1)

∂

∂t
(ραvα) = −∇ · F̂momα −∇ · (PαÎ− τ̂αβ) + F α −Dthermα +Dα (2.2)

Fmassα = ραvα (2.3)

F̂momα = ραvα ⊗ vα (2.4)

τ̂αβ = 2
N∑
β

ηαβ
2

(
∇vβ + (∇vβ)T −

2

3
(∇ · vβ )̂I

)
(2.5)

Dthermα =
1

Pt

N∑
β=1

PαPβ

Dαβ

(
DT

α

ρα
−
DT

β

ρβ

)
∇ lnT (2.6)

Dα =
N∑

β=1

PαPβD̂αβ(vβ − vα) (2.7)

D̂αβ = (PtDαβ)
−1Î (2.8)

where t is time, ρ is a density scalar field, v is a velocity vector field, Sα is a sink/source

term, P is a pressure scalar field, Î is the identity tensor, τ̂αβ is the viscous stress tensor

(discussed below), F α is an external force vector field, Pt is the total pressure,D
T is the multi-

component thermal diffusion coefficients, T is the temperature, and Dαβ is the Maxwell-

Stefan diffusion coefficient between species α and β.
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Equation (2.1) is the typical unsteady continuity equation, before any incompressibility

assumptions are made, with an additional sink/source term to account for losing or gaining

mass in the control volume. In typical mass transport conditions mass is conserved and

Sα = 0. In this situation the total mass flux along the boundary of the control volume must

equal zero. For fuel cells, a chemical reaction is occurring and a sink/source term must be

included. A source/sink term, Sα, is not considered in this chapter, and further discussion

is left till section 4.2.

Equation (2.2) looks similar to Cauchy’s momentum equation. The term on the LHS

represents an accumulation of momentum with time. The first term on the RHS, ∇· F̂momα ,

is the convective term and represents the movement of the fluid particle due to the bulk

motion of the fluid. The next two terms are an expansion of the stress tensor term in

Cauchy’s momentum equation. The first of these two terms is the hydrostatic pressure term,

P Î, which acts normal and inwards to the surface. The second of the two terms is the viscous

stress tensor, τ̂αβ, which describes the stress due to the strain rate of the fluid in terms of

viscosity and the velocity vector field. The most typical external force vector field included in

models is body force, which is included when gravity is considered in the governing equations.

The last two terms are new and help couple the momentum equations for each gas species.

The thermal diffusion term, Dtherm, represents gas diffusion due to temperature gradients.

The diffusion term, Dα, is the Maxwell-Stefan diffusion term for multi-component species

diffusion.

2.2 Assumptions

The following assumptions were considered:

1. Steady-state conditions, i.e. all derivatives with respect to time are negligible

2. Single-phase

3. Isothermal, i.e. ∇ lnT ≈ 0

4. All gases can be considered ideal gases, therefore density and pressure are related by

P = ρ
M
RT

5. For all derivations gravity is considered the only external forces, i.e. F α = ραg, however

gravity was neglected when running all simulations.

6. Second viscosity, ζα, is negligible, i.e. ζα ≈ 0

7. The multi-component diffusion in gases occurs at low density, allowing for Maxwell-

Stefan diffusion coefficients to be represented by binary diffusivities, i.e. Dαβ ≈ Dαβ
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8. The binary diffusivity coefficients used to determine the Maxwell-Stefan diffusion co-

efficients can be approximated from Chapman-Enskog theory

9. The partial viscosity is dominant along the main diagonal such that τ̂αβ ≈ τ̂α.

Applying the assumptions above and simplifying, the governing equations that were

implemented in OpenFCST are:

0 = ∇ · Fmassα (2.9)

0 = ∇ · (F̂momα + PαÎ− τ̂α)− (ραg +Dα) (2.10)

Fmassα = ραvα (2.11)

F̂momα = ραvα ⊗ vα (2.12)

Dα =
N∑

β=1

PαPβD̂αβ(vβ − vα) (2.13)

D̂αβ = (PtDαβ)
−1Î (2.14)

2.3 Closure Equations

2.3.1 Viscous Stress Tensor

The viscous stress tensor is represented for species α as:

τ̂α = 2ηα∇svα + λα(∇ · vα)̂I (2.15)

where λ is the bulk viscosity, η is the partial dynamic viscosity, and ∇s is the symmetric

gradient defined as ∇s =
1
2

(
∇+∇T

)
. It should be noted that the ∇T term in the symmetric

gradient does not imply that the gradient operator is transposed. Rather, the gradient of the

velocity vector field is transposed; i.e. ∇Tvα = (∇vα)T . As mentioned in section 2.2, since

the second viscosity, ζ, is assumed negligible then the relation between second viscosity, bulk

viscosity, and dynamic viscosity becomes:

���
0

ζα = λα +
2

3
ηα (2.16)

λα = −2

3
ηα (2.17)

This allows for the viscous stress tensor to be only a function of the partial dynamic viscosity

and the velocity vector field, and is expressed as:

τ̂α = 2ηα∇svα −
2

3
ηα(∇ · vα)̂I (2.18)
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2.3.2 Diffusion Coefficient

Chapman-Engskog theory was used to determine accurately the Maxwell-Stefan diffusion co-

efficients [45]. A modified form of this equation presented by Bird [45] is used in OpenFCST.

This equation was modified to account for a different choice of units for input variables and

is expressed as [45]:

Dαβ = 188.29T 3/2

√
1/Mα + 1/Mβ

Pt σ2
αβ Ω

∗
D

(2.19)

σαβ =
1

2
(σα + σβ) (2.20)

where Dαβ is the diffusion coefficient (cm2 s−1), M is the molar mass (gmol−1), Pt is the

absolute total pressure (Pa), σα is the characteristic diameter of the molecule known as

the collision diameter [45], and Ω∗
D is the diffusion collision integral. Ω∗

D can be considered

a correction factor from assuming an idealized rigid-sphere molecular model. Due to the

complexity of the integral expression for Ω∗
D it is often easier to interpolate from tabulated

values, like those given by Bird [45]. Neufeld et al. has curve fitted this data to the following

equation [83]:

Ω∗
D =

1.06036

(T ∗)0.15610
+

0.19300

exp(0.47635T ∗)
+

1.03587

exp(1.52996T ∗)
+

1.76474

exp(3.89411T ∗)
(2.21)

T ∗
αβ =

Tk

ϵαβ
(2.22)

ϵαβ =
√
ϵαϵβ (2.23)

where T ∗
αβ is the reduced temperature between species α and β, k is the Boltzmann constant

(1.381× 10−23 JK−1), and ϵ is the maximum attractive energy between two molecules [45]

(J). Values for ϵ are typically reported in relation to the Boltzmann constant in the form

ϵ/k.

Under normal circumstances, equation (2.19) is a function of pressure and because the

species are assumed to be ideal gases then the diffusion coefficient is a function of density.

However, if equation (2.19) is substituted into equation (2.14) as follows:

D̂αβ = (PtDαβ)
−1Î (2.24)

=

(
Pt 188.29T

3/2

√
1/Mα + 1/Mβ

Pt σ2
αβ Ω

∗
D

)−1

Î (2.25)

=

(
188.29T 3/2

√
1/Mα + 1/Mβ

σ2
αβ Ω

∗
D

)−1

Î (2.26)

then the pressure, and by extension density, cancels out.
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2.3.3 Viscosity Model

Kerkhof and Geboers emphasize that the partial dynamic viscosity, ηα, is not the same

as the dynamic viscosity for a pure substance, η0α [78]. There are multiple methods for

calculating the dynamic viscosity of a mixture [84–86], however not much has been done to

determine the partial viscosity of the individual components in a mixture. Using Kerkhof

and Geboers’ assumption that the partial viscosities of the components are additive towards

the dynamic viscosity of the mixture, then previous methods for calculating the dynamic

viscosity of a mixture can typically be used. Two different models are presented here that

were implemented in OpenFCST. One proposed by Wilke [87], that is simple to implement

and fairly accurate. The second was derived by Kerkhof and Geboers [1]. It is more accurate,

but also more computationally expensive.

2.3.3.1 Wilke’s Model

Kerkhof and Geboers recommended using the model developed by Wilke for determining the

partial viscosity of a mixture [78]. Since the partial viscosities are assumed to be additive

towards the overall mixture partial viscosity, the summation over species α is removed from

Wilke’s model [87]. This results in the following partial viscosity for species α:

ηα =
xαη

0
α∑N

β=1 xβξαβ
(2.27)

ξαβ =

[
1 + (η0α/η

0
β)

1/2(Mβ/Mα)
1/4
]2

[8(1 +Mα/Mβ)]
1/2

(2.28)

where x is the molar fraction, and M is the molar mass. Since the governing equations use

density instead of molar fraction as a solution variable, the following relation can be used to

transform the equation into a function of density:

xα =
Cα

Ct

=
ραM

ρMα

(2.29)

where Cα and Ct are the species and total concentration (mol cm−3) respectively. This re-

places the molar fraction with the unknown density scalar field from the governing equations.

Thus, the partial viscosity will be approximated as follows:

ηα =
ραη

0
α

Mα

N∑
β=1

ρβ
Mβ
ξαβ

(2.30)

ξαβ =

[
1 + (η0α/η

0
β)

1/2(Mβ/Mα)
1/4
]2

[8(1 +Mα/Mβ)]
1/2

(2.31)
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where ρα is the density of species α.

Wilke’s viscosity model neglects second-order terms, and with the exception of the

hydrogen-argon mixture the average deviation from experimental points is 0.49% [87]. From

other researchers it has been found that Wilke’s viscosity model is fairly accurate and only

loses accuracy for mixtures containing hydrogen [84, 86]. Poling [86] goes further stating

that it looses accuracy when Mα >> Mβ and η0α >> η0β. For this reason when simulating

an anode or a full membrane electrode assembly (MEA) of a PEFC another method should

possibly be considered.

To determine the dynamic viscosity of each of the individual species, Chapman-Engskog

theory will be used. This equation is expressed as [45]:

η0 = 2.6693× 10−5

√
MT

σ2Ω∗
η

(2.32)

where η0 is the dynamic viscosity of the individual species (g s−1 cm−1), Ω∗
η is the viscosity

collision integral. Like Ω∗
D, values for Ω

∗
η are tabulated by Bird [45], and Neufeld et al. has

curve fitted this data to the following equation [83]:

Ω∗
η =

1.16145

(T ∗)0.14874
+

0.52487

exp(0.77320T ∗)
+

2.16178

exp(2.43787T ∗)
(2.33)

T ∗ =
Tk

ϵ
(2.34)

Since this equation is for determining the dynamic viscosity of a pure substance, then it is

not related to any of the species in the mixture. As a result, no type of averaging for the

variables σ and ϵ/k between the different species is required.

2.3.3.2 Kerkhof and Geboers’ Model

Kerkhof and Geboers derived a set of equations for the partial viscosity from the B-terms

in the perturbation function, ϕ, for the Boltzmann equation [1, 88]. These equations are

similar to those derived by Hirschfelder et al. [85] in that they both utilize the Lennard-

Jones constants and the collision integrals, as both require the inversion of a matrix in order

to find the partial viscosities. These equations are:

P̂ η = 1 (2.35)

Pαα =
2

kT

(
4

5
Ω(2,2)

αα +
16Mα

15ρα

N∑
β ̸=α

ρβ
(Mα +Mβ)2

(
5MαΩ

(1,1)
αβ +

3

2
MβΩ

(2,2)
αβ

))
(2.36)

Pαβ = − 2

kT

(
16

15

(
MαMβ

(Mα +Mβ)2

)(
5Ω

(1,1)
αβ −

3

2
Ω

(2,2)
αβ

))
(2.37)
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where η is a vector of the partial viscosities (kg s−1m−1), 1 is a vector of ones, M is the

molar mass (kgmol−1), ρ is the density, and Ω
(ℓ,s)
αβ are the collision integrals. The collision

integrals, Ω
(ℓ,s)
αβ , are expressed as:

Ω
(ℓ,s)
αβ = Ω

∗(ℓ,s)
αβ

[
Ω

(ℓ,s)
αβ

]
rs

(2.38)[
Ω

(ℓ,s)
αβ

]
rs
=

√
kT

2πµαβ

(
(s+ 1)!

2

)[
Qℓ

αβ

]
rs

(2.39)

[
Qℓ

αβ

]
rs
=

(
1− 1

2

(
1 + (−1)ℓ

1 + ℓ

))
πσ2

αβ (2.40)

σαβ =
1

2
(σα + σβ) (2.41)

µαβ =
MαMβ

NA(Mα +Mβ)
(2.42)

where σ is the collision diameter (m), µαβ is the reduced mass between species α and β, and

NA is Avogadro’s constant (6.022× 1023moleculemol−1). The subscript rs stands for rigid

spheres and signifies that
[
Ω

(ℓ,s)
αβ

]
rs
is derived assuming that the particles are treated as rigid

spheres. As a result, Ω
∗(ℓ,s)
αβ is a correction factor to account for the differences in behaviour

from this assumption. Similarly to Ω∗
D and Ω∗

η, values for Ω
∗
αβ are tabulated by Hirschfelder

et al. [85]. Kerkhof and Geboers have curve fitted Hirschfelder’s data using a Neufeld-type

equation [1] as follows:

Ω
∗(ℓ,s)
αβ = a

(
T ∗
αβ

)−b
+ c exp

(
−dT ∗

αβ

)
(2.43)

T ∗
αβ =

Tk

ϵαβ
(2.44)

ϵαβ =
√
ϵαϵβ (2.45)

The values for the constants in equation (2.43) for Ω
∗(1,1)
αβ and Ω

∗(2,2)
αβ are shown in Table 2.1.

Table 2.1 – Constants for empirical Ω
∗(ℓ,s)
αβ equations (Ref [1])

Variable
Ω

∗(1,1)
αβ Ω

∗(2,2)
αβ

0.3 ≤ T ∗ < 2.5 2.5 ≤ T ∗ ≤ 400 0.3 ≤ T ∗ < 2.5 2.5 ≤ T ∗ ≤ 400

a 1.340794 1.066993 26.425725 1.151508
b 0.326244 0.157384 0.045563 0.145812
c 1.546648 0.424013 -25.232304 0.437374
d 2.768179 0.698873 0.016075 0.670219
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2.3.3.3 Comparison of Results

Hirschfelder et al. [85] has provided experimental data at various temperatures for an Argon-

Neon and Argon-Neon-Helium mixture. This data will be used to validate that both viscosity

models have been implemented correctly in OpenFCST and results will be compared. Ta-

ble 2.2 shows the gas properties that these two models require for calculating the partial

viscosities of the mixtures.

Table 2.2 – Gas properties

Property Argon Neon Helium Units Reference

M 39.948× 10−3 20.183× 10−3 4.002 602× 10−3 [89] kgmol−1 [45]
σ 3.432× 10−10 2.789× 10−10 2.576× 10−10 m [85]
ε/k 124 35.7 10.2 K [85]

Figures 2.1, 2.2, and 2.3 show the partial viscosity calculated using Wilke and Kerkhof

and Geboers’ models at various temperatures. The experimental values are also shown for

the dynamic viscosity of the mixture. Both models appear to accurately predict the dynamic

viscosity of the mixture. As well, the partial viscosity of the mixture intuitively shows what

one would expect. That the partial viscosity of the mixture approaches the dynamic viscosity

as the mole fractions approach 1.

Figure 2.1 – Partial viscosity of Ar-Ne mixture at T=293.16K
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Figure 2.2 – Partial viscosity of Ar-Ne mixture at T=373.16K

Figure 2.3 – Partial viscosity of Ar-Ne mixture at T=473.16K
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To properly compare the accuracy of each model the dynamic viscosity of the mixture

was calculated at the same molar fractions as the experimental partial viscosity. Then an the

least squares error was calculated assuming the experimental values are the exact solution.

Table 2.3 shows the overall partial viscosities compared with the experimental values at

various temperatures. From this the least squares error for Wilke and Kerkhof and Geboers’

models are tabulated in Table 2.4. With the exception of the case when the temperature is

473.16K, Kerkhof and Geboers’ model was always more accurate than Wilke’s. Both Wilke

and Kerkhof and Geboers’ models show an increased error from the 373.16K to 473.16K. In

the case of a PEFC this should not be a problem as temperatures do not typically go above

373.15K.

Table 2.3 – Dynamic viscosity of an Ar-Ne mixture at various temperatures

T (K) xAr 0.0000 0.2680 0.6091 0.7421 1.000

293.16
Experimental 3.092 2.808 2.504 2.401 2.213
Wilke 3.105 2.771 2.468 2.374 2.221
KG 3.110 2.819 2.504 2.397 2.211

373.16
Experimental 3.623 3.313 2.990 2.885 2.693
Wilke 3.635 3.283 2.957 2.855 2.686
KG 3.640 3.330 2.997 2.883 2.686

473.16
Experimental 4.220 3.890 3.529 3.413 3.222
Wilke 4.241 3.864 3.508 3.395 3.208
KG 4.245 3.905 3.541 3.417 3.202

Table 2.4 – Error in dynamic viscosity of the Ar-Ne mixture at various temperatures

T (K)
Least Squares Error

Wilke KG

293.16 0.061× 10−5 0.022× 10−5

373.16 0.055× 10−5 0.026× 10−5

473.16 0.390× 10−5 0.443× 10−5

Table 2.5 shows the dynamic viscosity of the mixture at various temperatures for different

molar fractions of Argon and Neon. If the values for Kerkhof and Geboers’ model calculated

in this work and by Kerkhof and Geboers themselves [1] are compared they are nearly

identical for all cases. This validates the equations implemented in OpenFCST to calculate

Kerkhof and Geboers’ partial viscosity model. Table 2.6 shows the least squares error for

Wilke and Kerkhof and Geboers’ model. For all cases Kerkhof and Geboers’ partial viscosity

model has a smaller error and is consistently around 0.025× 10−5. On the other hand,

Wilke’s model appears to have a steadily increasing error.
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Table 2.5 – Dynamic viscosity of an Ar-Ne-He mixture at various temperatures

T (K) xAr xNe Experimental Wilke KG

293

0.2670 0.5576 2.740 2.708 2.736
0.3213 0.3193 2.569 2.563 2.575
0.5851 0.2166 2.411 2.411 2.432
0.2382 0.2189 2.504 2.524 2.512

373

0.2670 0.5576 3.237 3.213 3.233
0.3213 0.3193 3.044 3.052 3.050
0.5851 0.2166 2.886 2.894 2.910
0.2382 0.2189 2.957 2.999 2.966

473

0.2670 0.5576 3.790 3.785 3.792
0.3213 0.3193 3.574 3.605 3.582
0.5851 0.2166 3.415 3.437 3.439
0.2382 0.2189 3.470 3.537 3.477

Table 2.6 – Error in dynamic viscosity of an Ar-Ne-He mixture at various temperatures

T (K)
Least Squares Error

Wilke KG

293 0.038× 10−5 0.023× 10−5

373 0.050× 10−5 0.027× 10−5

473 0.077× 10−5 0.027× 10−5

2.4 Representative Elementary Volume Averaging

2.4.1 Introduction

A PEFC has five distinct layers: the channel, GDL, MPL, CL, and PEM. The GDL, MPL,

and CL being porous materials require a representative elementary volume (REV) averaging

form of the governing equations. Consider the small porous elementary volume shown in

Figure 2.4, where there is a fluid domain and a solid domain. If one were to model the fluid

flow through this porous medium it would be computationally challenging. This is because

a highly refined mesh that accurately reflects the porous structure and necessary boundary

conditions would be required. Thus, resulting in a computationally expensive simulation.

Instead, an approximate solution can be obtained by volume averaging the equations in the

domain [90].

The two most common choices for REV averaging are the phase and intrinsic average.

For the phase average, the field variables are averaged over the entire domain including the

solid domain. While for the intrinsic average, the field variables are averaged over the domain

that the fluid exists in. The phase and intrinsic REV averages are mathematically defined
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Figure 2.4 – Representation of REV averaging

for a given function ϕ respectively as [90]:

⟨ϕ⟩ = 1

VREV

∫
Vf

ϕ dV (2.46)

⟨ϕ⟩f =
1

Vf

∫
Vf

ϕ dV (2.47)

where VREV is the total volume of the REV and Vf is the volume of the fluid in the REV.

These two REV averages can be related to each other through the definition of porosity, ε,

as follows:

⟨ϕ⟩ = ε⟨ϕ⟩f (2.48)

ε =
Vf
VREV

(2.49)

Zingan [91] determined that the best choice is the combination (⟨ρα⟩, ⟨vα⟩f ). This is because
it generates a stable non-oscillatory numerical solution with no jumps in the solution variables

across the interface.

To apply this REV averaging to the governing equations the following identities are useful
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[92–94]:

⟨Aϕ+Bψ⟩ = A⟨ϕ⟩+B⟨ψ⟩ (2.50)

⟨Aϕ+Bψ⟩f = A⟨ϕ⟩f +B⟨ψ⟩f (2.51)

⟨ϕψ⟩ ≈ 1

ε
⟨ϕ⟩⟨ψ⟩ (2.52)

⟨ϕψ⟩f ≈ 1

ε
⟨ϕ⟩f⟨ψ⟩f (2.53)

⟨∇ϕ⟩ = ∇⟨ϕ⟩+ 1

VREV

∮
Aβγ

ϕnβγ dA (2.54)

⟨∇ · F ⟩ = ∇ · ⟨F ⟩+ 1

VREV

∮
Aβγ

F · nβγ dA (2.55)

⟨∇F ⟩ = ∇⟨F ⟩+ 1

VREV

∮
Aβγ

F ⊗ nβγ dA (2.56)

⟨∇ · T̂ ⟩ = ∇ · ⟨T̂ ⟩+ 1

VREV

∮
Aβγ

T̂ nβγ dA (2.57)

where ϕ and ψ are scalar fields, F is a vector field, T̂ is a tensor field, and Aβγ and nβγ are the

surface area and normal vector of the β-γ interface within the control volume respectively.

Expressed more simply the β-γ interface is the interface between the fluid and solid inside

the control volume. As such, when the vector field, F , represents a velocity vector field then

by the no penetration and no-slip assumption this boundary integral must be zero. A proof

for equation (2.54) can be found in [95] or [93]. The technique used in [95] or [93] can also

be used to prove equations (2.55) to (2.57).

2.4.2 Multi-Component Mass Transport Model

As discussed by Zingan [91], after averaging the governing equations become:

0 = ∇ · ⟨Fmassα⟩ (2.58)

0 = ∇ ·
(
⟨F̂momα⟩+ ⟨Pα⟩̂I− ⟨τ̂α⟩

)
+

1

VREV

∮
Aβγ

(
PαÎ− τ̂α

)
nβγ dA

−
(
⟨ρα⟩g + ⟨Dα⟩

) (2.59)

⟨Fmassα⟩ = ⟨ρα⟩⟨vα⟩f (2.60)

⟨F̂momα⟩ = ⟨ρα⟩⟨vα⟩f ⊗ ⟨vα⟩f (2.61)

⟨Pα⟩ = ⟨ρα⟩
RTmix

Mα

(2.62)

⟨Dα⟩ =
1

ε

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩f − ⟨vα⟩f ) (2.63)
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Based on the work of Zingan [91] a derivation for equation (2.58) and (2.59) can be found

in Appendix A.

Whitaker [90] proposed a closure form for the surface integral in equation (2.59) by

approximating it with Darcy’s Law. In a PEFC there is a possibility to have high velocity

flows, the extended Darcy-Forchheimer law was used instead:

1

VREV

∮
Aβγ

(PαÎ− τ̂α)nβγ dA ≈ ⟨ηα⟩K̂
−1
ε⟨vα⟩+ β̂⟨ρα⟩|ε⟨vα⟩|ε⟨vα⟩ (2.64)

where K̂
−1

is the inverse of the permeability tensor (cm2) and β̂ is the nonlinear Forchheimer

correction tensor (cm). The Darcy-Forchheimer law is an extension of typical Darcy flow.

Since Darcy’s law is only valid for low flow regimes, the additional Forchheimer correction

tensor allows for more accuracy to better reflect high velocity flows through a porous medium.

This results in the following REV averaged governing equations for a porous domain:

0 = ∇ · ⟨Fmassα⟩ (2.65)

0 = ∇ ·
(
⟨F̂momα⟩+ ⟨Pα⟩̂I− ⟨τ̂α⟩

)
−
(
⟨F porα⟩+ ⟨ρα⟩g + ⟨Dα⟩

)
(2.66)

⟨Fmassα⟩ = ⟨ρα⟩⟨vα⟩f (2.67)

⟨F̂momα⟩ = ⟨ρα⟩⟨vα⟩f ⊗ ⟨vα⟩f (2.68)

⟨Pα⟩ = ⟨ρα⟩
RTmix

Mα

(2.69)

⟨F porα⟩ = −⟨ηα⟩K̂
−1
ε⟨vα⟩f − β̂⟨ρα⟩|ε⟨vα⟩f |ε⟨vα⟩f (2.70)

⟨Dα⟩ =
1

ε

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩f − ⟨vα⟩f ) (2.71)

2.4.3 Closure Equations

2.4.3.1 Viscous Stress Tensor

Considering the stress tensor term, first equation (2.57) is applied as follows:

⟨∇ · τ̂α⟩ = ∇ · ⟨τ̂α⟩+
1

VREV

∮
Aβγ

τ̂αnβγ dA (2.72)

Opening the stress tensor term, equations (2.50) and (2.52) can now be applied:

⟨τ̂α⟩ = 2⟨ηα∇svα⟩ −
2

3
⟨ηα (∇ · vα) Î⟩ (2.73)

≈ 2

ε
⟨ηα⟩⟨∇svα⟩ −

2

3ε
⟨ηα⟩⟨∇ · vα⟩̂I (2.74)
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Equations (2.56) and (2.55) can then be applied as follows:

⟨τ̂α⟩ =
2

ε
⟨ηα⟩

(
∇s⟨vα⟩+

1

VREV

∮
Aβγ

vα ⊗ nβγ dA

)

− 2

3ε
⟨ηα⟩

(
∇ · ⟨vα⟩+

1

VREV

∮
Aβγ

vα · nβγ dA

)
Î (2.75)

Assuming no-slip along the β-γ interface in the REV and no penetration is assumed along the

boundary of the porous medium control volume, then both surface integrals in equation (2.75)

must be zero. Finally, the velocity vector field must be converted to an intrinsic average like

so:

⟨τ̂α⟩ =
2

ε
⟨ηα⟩∇s⟨vα⟩ −

2

3ε
⟨ηα⟩∇ · ⟨vα⟩̂I (2.76)

= 2⟨ηα⟩∇s⟨vα⟩f −
2

3
⟨ηα⟩∇ · ⟨vα⟩f Î (2.77)

In summary,

⟨∇ · τ̂α⟩ = ∇ · ⟨τ̂α⟩+
1

VREV

∮
Aβγ

τ̂αnβγ dA (2.78)

= ∇ ·
(
2⟨ηα⟩∇s⟨vα⟩f −

2

3
⟨ηα⟩∇ · ⟨vα⟩f Î

)
+

1

VREV

∮
Aβγ

τ̂αnβγ dA (2.79)

where τ̂α is the stress tensor, ⟨ηα⟩ is the phase averaged partial dynamic viscosity, ⟨vα⟩f is

the intrinsic averaged velocity vector field, Î is the identity tensor, VREV is the total volume

of the REV, and nβγ is the normal vector along the surface of the domain of the element.

2.4.3.2 Diffusion Coefficient

Section 2.3.2 showed that the diffusion coefficient calculated from Chapman-Engskog theory

is a function of total pressure. As discussed in section 2.3.2, this total pressure cancels out

and is not considered for volume averaging, however volume averaging is still required.

By volume averaging, the porosity of the porous medium has been accounted for in the

diffusion term, expressed:

⟨Dα⟩ =
1

ε

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩f − ⟨vα⟩f ) (2.80)

=
N∑

β=1

⟨Pα⟩⟨Pβ⟩
(

1

εPtDαβ

Î

)
(⟨vβ⟩f − ⟨vα⟩f ) (2.81)

From macro-scale observation a fluid may appear to travel in a straight line through a porous

media, but unlike a channel a fluid is not able to move in any direction freely. Fine particles
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that make up the porous media obstruct the path of the fluid, and the fluid must pass around

these fine particles. This tortuous path that the particles diffuse along must be accounted

for. This is typically represented mathematically as:

Deff
αβ =

ε

τ
Dαβ (2.82)

where Deff
αβ is the effective Maxwell-Stefan diffusion coefficient, and τ is the tortuosity

through the porous media. When in the porous domain, Deff
αβ is then used in place of

Dαβ in the governing equations. Tortuosity is the ratio of the length of the cord to the

distance between the two ends. A tortuosity of 1 would represent a straight line, while a

circle would have an infinite tortuosity.

Tortuosity is a difficult quantity to obtain, and is typically estimated through empirical

relations. The most common relation used is Bruggeman’s relation, expressed as:

τ = ε−0.5 (2.83)

Deff
αβ = ε1.5Dαβ (2.84)

Secanell [18] pointed out that this can lead to inaccuracies in modeling the porous layers

of a PEFC. This is because Bruggeman [96] obtained this relation for a bed of spheres of

different size [18, 96, 97], which does not accurately describe the porous structures in a

PEFC. Pharoah et al. analyzed effective transport properties and determined that using the

Bruggeman relation in a PEFC overpredicts the oxygen concentration in the CL resulting in

higher current densities.

Secanell [18] used a relation proposed by Tomadakis et al. in [98], where Monte Carlo

simulations were used for predicting effective diffusivity. They determined a relation for

effective diffusivity that is expressed as:

Deff
αβ = Dαβ

(
ε− εth
1− εth

)µ

H(ε− εth) (2.85)

H(ε− εth) =

{
0 if ε < εth

1 if ε ≥ εth
(2.86)

where εth and µ are constants dependent on the orientation of the fibers in the porous media,

and H(ε− εth) is the Heaviside unit step function.

The method proposed by Tomadakis et al. [98] and used by Secanell [18] was also used

in this work. The resulting diffusion coupling term in the governing equation is expressed
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as:

⟨Dα⟩ =
N∑

β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩f − ⟨vα⟩f ) (2.87)

D̂αβ =
(
PtD

eff
αβ

)−1

Î (2.88)

Deff
αβ = Dαβ

(
ε− εth
1− εth

)µ

H(ε− εth) (2.89)

2.4.3.3 Viscosity Model

Both Wilke and Kerkhof and Geboers’ viscosity models are functions of the unknown density

scalar field, then an REV averaging must also be considered. This is much more straight-

forward than some of the previous REV averaging derivation, as no swapping of integration

and differentiation is required.

2.4.3.3.1 Wilke’s Model

The REV average of Wilke’s viscosity model is derived by applying equation (2.52) to (2.30)

as follows:

⟨ηα⟩ =
η0α
Mα

⟨
ρα∑N

β=1
ρβ
Mβ
ξαβ

⟩
(2.90)

=
⟨ρα⟩η0α

εMα

∑N
β=1

⟨ρβ⟩
Mβ

ξαβ
(2.91)

2.4.3.3.2 Kerkhof and Geboers’ Model

For Kerkhof and Geboers’ viscosity model the values for P̂ off the main diagonal are not

functions of the unknown density scalar field. As a result, only equation (2.36) needs to be

REV averaged. This is done by simply applying equation (2.52) as follows:

⟨ηα⟩ = ⟨Pαα⟩ (2.92)

=
2

kT

(
4

5
Ω(2,2)

αα +

⟨
16Mα

15ρα

N∑
β ̸=α

ρβ
(Mα +Mβ)2

(
5MαΩ

(1,1)
αβ +

3

2
MβΩ

(2,2)
αβ

)⟩)
(2.93)

=
2

kT

(
4

5
Ω(2,2)

αα +
16Mα

15ε⟨ρα⟩

N∑
β ̸=α

⟨ρβ⟩
(Mα +Mβ)2

(
5MαΩ

(1,1)
αβ +

3

2
MβΩ

(2,2)
αβ

))
(2.94)

2.4.4 Summary

Consider a d-dimensional fuel cell model in the domain Ω ⊂ Rd with a boundary Γ. From

section 2.4 the governing equations must be valid in two separate domains, the channel and
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the porous layers. As a result, the domain, Ω, must contain two subset domains. One for

the channel Ωc ⊂ Ω with a boundary Γc ⊂ Γ, and a second for the porous layers Ωp ⊂ Ω

with a boundary Γp ⊂ Γ.

From this information, and that from the previous sections, the governing equations can

be re-written to be valid in all domains as follows:

0 =∇ · Fmassα in Ω (2.95)

0 = ∇ · (F̂momα + PαÎ− τ̂α)− (F porα + ραg +Dα) in Ω (2.96)

F̂massα = ραvα (2.97)

F̂momα = ραvα ⊗ vα (2.98)

Pα = ρα
RTmix

Mα

(2.99)

τ̂α = 2ηα∇svα −
2

3
ηα∇ · vαÎ (2.100)

F porα =

{
0 in Ωc

−ηαK̂
−1
εvα − β̂ρα|εvα|εvα in Ωp

(2.101)

Dα =
N∑

β=1

PαPβD̂αβ(vβ − vα) (2.102)

D̂αβ =
(
PtD

eff
αβ

)−1

Î (2.103)

ε =

{
1 in Ωc

0 < ε ≤ 1 in Ωp

(2.104)

ρα =

{
ρα in Ωc

⟨ρα⟩ in Ωp

(2.105)

vα =

{
vα in Ωc

⟨vα⟩f in Ωp

(2.106)

where ∀α ∈ Z and is the species index in the domain Ω.

2.5 Linearization

2.5.1 Newton-Raphson’s Method

Since this is a nonlinear system of equations the governing equations are linearized. This

can be done before or after the equations are weakened. Due to personal preference the

governing equations were linearized first. This is done by taking the governing equations in
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their current residual form, and perturbing the solution variables slightly using a first order

Taylor series expansion. This is done as follows:

0 = R(ρn+1
α ,vn+1

α ) = R(ρnα,v
n
α) +

∂R

∂ρα

⏐⏐⏐⏐nδρα +
∂R

∂vα

⏐⏐⏐⏐nδvα +O((δρα)2 + (δvα)
2) (2.107)

Thus, the linear problem to be solved is of the form:

∂R

∂ρα

⏐⏐⏐⏐nδρα +
∂R

∂vα

⏐⏐⏐⏐nδvα = −R(ρnα,v
n
α) (2.108)

where the solution increments, δρα and δvα are being solved for. For future convenience,

when the variation operator, δ, is not applied to a solution variable it will take the form:

δR =
∂R

∂ρα

⏐⏐⏐⏐nδρα +
∂R

∂vα

⏐⏐⏐⏐nδvα (2.109)

After δρα and δvα have been solved for, a line search method is used to update the solution

variables. This line search method is done as follows:

ρn+1
α = ρnα + hδρα (2.110)

vn+1
α = vnα + hδvα (2.111)

where h is a relaxation step size that can be used to help convergence. For all cases analyzed

in this work a value of 1 for h was found to be suitable.

The solution variables are categorized into blocks. One block for each density species so-

lution variable, and d blocks for each orthogonal velocity species component in d-dimensional

space. At the end of each iteration the L2 norm is computed for each of these vectors. The

overall residual is then computed as the L2 norm of these L2 norm block residuals. For the

stopping criteria, a tolerance of 10−8 was used.

2.5.2 Multi-Component Mass Transport Model

Applying the process discussed in the previous section to the governing equations, the Taylor

series expansion appears as follows:

∇ · F n+1
massα = ∇ · (F n

massα + δF n
massα) +O((δρα)

2 + (δvα)
2) (2.112)

∇ · (F̂ n+1

momα
+P n+1

α Î− τ̂ n+1
α )− (F n+1

porα + ρn+1
α g +Dn+1

α )

= ∇ · [(F̂ n

momα
+ δF̂momα) + (P n

α Î+ δPαÎ)− (τ̂ n
α + δτ̂α)]

− [(F n
porα + δF porα) + (ρnαg + δραg) + (Dn

α + δDα)]

+O((δρα)2 + (δvα)
2)

(2.113)
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Neglecting higher order terms the linearized system of equations to be solved are:

∇ · δFmassα = −∇ · F n
massα in Ω (2.114)

∇ · (δF̂momα + δPαÎ−δτ̂α)− (δF porα + δραg + δDα)

= −∇ · (F̂ n

momα
+ P n

α Î− τ̂ n
α) + (F n

porα + ρnαg +D
n
α)

in Ω (2.115)

δFmassα = δραv
n
α + ρnαδvα (2.116)

δF̂momα = δραv
n
α ⊗ vnα + ρnαδvα ⊗ vnα + ρnαv

n
α ⊗ δvα (2.117)

δPα = δρα
RTmix

Mα

(2.118)

δF porα =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 in Ωc

− K̂
−1
ε (vnαδηα + ηαδvα)

− β̂
(
δρα|εvnα|εvnα + ρnα

εvnαεδvα
|εvnα|

εvnα + ρnα|εvnα|εδvα
)

in Ωp

(2.119)

δDα =
N∑

β=1

(δPαPβ + PαδPβ)D̂αβ(v
n
β − vnα) + PαPβD̂αβ(δvβ − δvα) (2.120)

ε =

{
1 in Ωc

0 < ε ≤ 1 in Ωp

(2.121)

ρnα =

{
ρnα in Ωc

⟨ρnα⟩ in Ωp

(2.122)

vnα =

{
vnα in Ωc

⟨vnα⟩f in Ωp

(2.123)

2.5.3 Closure Equations

2.5.3.1 Viscous Stress Tensor

The viscous stress tensor is a function composed of gradients and divergence of the velocity

solution variable as well as the partial viscosity. Since the partial viscosity is a function of

the density scalar field, this results in an extra term for the variation with respect to the

partial viscosity. It can easily be determined that the variation in the viscous stress tensor

is as follows:

δτ̂α = δηα

(
2∇svα −

2

3
(∇ · vα)̂I

)
+ ηα

(
2∇sδvα −

2

3
(∇ · δvα)̂I

)
(2.124)

2.5.3.2 Viscosity Model

As mentioned in the previous section, both viscosity models are functions of the unknown

density scalar field. As a result, the variation with respect to the density scalar field must
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be determined for these models.

2.5.3.2.1 Wilke’s Model

The variation in Wilke’s model is straightforward and can easily be shown to be equivalent

to:

⟨ηα⟩ =
⟨ρα⟩η0α

εMα

∑N
β=1

⟨ρβ⟩
Mβ

ξαβ
(2.125)

δ⟨ηα⟩ =
δ⟨ρα⟩η0α

εMα

∑N
β=1

⟨ρβ⟩
Mβ

ξαβ
− ⟨ρα⟩η0α
εMα

(∑N
β=1

⟨ρβ⟩
Mβ

ξαβ

)2 N∑
β=1

δ⟨ρβ⟩
Mβ

ξαβ (2.126)

=
η0α
εMα

(
N∑

β=1

⟨ρβ⟩
Mβ

ξαβ

)−1
⎡⎣δ⟨ρα⟩ − ⟨ρα⟩( N∑

β=1

⟨ρβ⟩
Mβ

ξαβ

)−1( N∑
β=1

δ⟨ρβ⟩
Mβ

ξαβ

)⎤⎦ (2.127)

2.5.3.2.2 Kerkhof and Geboers’ Model

Kerkhof and Geboers’ model is difficult to linearize as equation (2.35) is a set of independent

equations. On first inspection one may be inclined to do as follows:

P̂ η = 1 (2.128)

η = P̂
−1
1 (2.129)

δη = δ
(
P̂

−1
)
1 (2.130)

The problem is that this involves inverting a matrix where the values are determined by equa-

tions (2.36) and (2.37) and then taking the variation. This is a huge problem if everything

is done analytically. Alternatively, take:

P̂ η = 1 (2.131)

δP̂ η + P̂ δη = 0 (2.132)

δη = −P̂−1
δP̂ η (2.133)

Finally substitute equation (2.129) into (2.133):

δη = −P̂−1
δP̂ P̂

−1
1 (2.134)

Using equation (2.134) the matrix inversion can be done numerically and only the variation

in P̂ with respect to density is required. Equations (2.130) and (2.134) can be shown to be
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equivalent by considering:

δ
(
P̂

−1
P̂ P̂

−1
)
= 2δ

(
P̂

−1
)
P̂ P̂

−1
+ P̂

−1
δP̂ P̂

−1
(2.135)

δ
(
P̂

−1
)
= 2δ

(
P̂

−1
)
+ P̂

−1
δP̂ P̂

−1
(2.136)

−P̂−1
δP̂ P̂

−1
= δ

(
P̂

−1
)

(2.137)

If equation (2.137) is substituted into (2.134), one obtains equation (2.130). Thus, showing

equations (2.130) and (2.134) are equivalent.

Since the values off the main diagonal of P̂ are not a function of the density scalar field,

they will be zero. This results in a variation of a matrix that only contains values along the

main diagonal. The values for δPαα are as follows:

δ⟨Pαα⟩ =
32Mα

15εkT ⟨ρα⟩

(
N∑

β ̸=α

δ⟨ρβ⟩
(Mα +Mβ)2

(2.138)

− δ⟨ρα⟩
⟨ρα⟩

N∑
β ̸=α

⟨ρβ⟩
(Mα +Mβ)2

)(
5MαΩ

(1,1)
αβ +

3

2
MβΩ

(2,2)
αβ

)
(2.139)

2.6 Weak Formulation

The linearized form of the governing PDEs are weakened using the Bubnov-Galerkin finite

element method (FEM). Using the same justification as Reddy [99] for 2D incompressible

flow, qα and wα are chosen to represent the arbitrary scalar and vector test functions for

the density and velocity of species α respectively. qα is multiplied by equation (2.114), while

wα is multiplied by equation (2.115) using the dot product operator to produce a scalar

momentum equation for each species α. For simplicity the index for species is removed, and

only one of the species is considered. Integrating over the entire domain, Ω, the resulting

set of scalar equations are:∫
Ω

q∇ · δFmass dΩ =

∫
Ω

−q∇ · F n
mass dΩ (2.140)

∫
Ω

w ·
(
∇ · (δF̂mom + δP Î− δτ̂ )− (δF por + δρg + δD)

)
dΩ

=

∫
Ω

−w ·
(
∇ · (F̂ n

mom + P nÎ− τ̂ n)− (F n
por + ρng +Dn)

)
dΩ (2.141)
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The integrals above require that in order to achieve a solution the following requirements

must be met in Sobolev space:

ρ ∈ H1 :=

{
ρ : Ω→ R :

∫
Ω

ρ2 + (ρ′)2 dΩ <∞
}

(2.142)

δρ ∈ H1 :=

{
δρ : Ω→ R :

∫
Ω

(δρ)2 + (δρ′)2 dΩ <∞
}

(2.143)

q ∈ H0 :=

{
q : Ω→ R :

∫
Ω

q2 dΩ <∞
}

(2.144)

v ∈ H2 :=

{
v : Ω→ Rd :

∫
Ω

v2 + (v′)2 + (v′′)2 dΩ <∞
}

(2.145)

δv ∈ H2 :=

{
δv : Ω→ Rd :

∫
Ω

(δv)2 + (δv′)2 + (δv′′)2 dΩ <∞
}

(2.146)

w ∈ H0 :=

{
w : Ω→ Rd :

∫
Ω

w2 dΩ <∞
}

(2.147)

The ideal goal when performing the FEM is to weaken the equation such that both the

solution variable and test function belong to the same space, i.e. v,w ∈ H1. For density

and its respective test function q this is not possible. In this case, a weakened form where

ρ ∈ H0 and q ∈ H1 was found. To do this, first the following identities are applied:

∇ · (F q) = q∇ · F + F · ∇q (2.148)

∇ ·
(
T̂ sF

)
= ∇F : T̂ s + F · ∇ · T̂ s (2.149)

where F is a vector field, q is a scalar field, and T̂ s is a symmetric tensor of rank 2. Equation

(2.148) is well known and it is left to the reader to prove if they desire, while equation (2.149)

is not as typical of an identity. For this reason a proof for it can be found in Appendix B.1.

Discretizing the integral over the entire domain, Ω, into smaller elements, Ωe, and applying

these identities result in the following set of equations:∫
Ωe

∇ · (qδFmass)− δFmass · ∇q dΩe =

∫
Ωe

−∇ · (qF n
mass) + F

n
mass · ∇q dΩe (2.150)

∫
Ωe

∇·
((
δF̂mom + δP Î− δτ̂

)
w
)
−∇w :

(
δF̂mom + δP Î− δτ̂

)
−w·(δF por + δρg + δD) dΩe

=

∫
Ωe

−∇·
((
F̂

n

mom + P nÎ− τ̂ n
)
w
)
+∇w :

(
F̂

n

mom + P nÎ− τ̂ n
)
+w·

(
F n

por + ρng +Dn
)
dΩe

(2.151)

Now the divergence theorem can be applied resulting in:

−
∫
Ωe

δFmass ·∇q dΩe+

∮
Γe

qδFmass ·n dΓe =

∫
Ωe

F n
mass ·∇q dΩe−

∮
Γe

qF n
mass ·n dΓe (2.152)
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−
∫
Ωe

∇w :
(
δF̂mom + δP Î− δτ̂

)
+w · (δF por + δρg + δD) dΩe

+

∮
Γe

(
δF̂mom + δP Î− δτ̂

)
w · n dΓe

=

∫
Ωe

∇w :
(
F̂

n

mom + P nÎ− τ̂ n
)
+w ·

(
F n

por + ρng +Dn
)
dΩe

−
∮
Γe

(
F̂

n

mom + P nÎ− τ̂ n
)
w · n dΓe (2.153)

Equations (2.152) and (2.153) are now in a desirable Sobolev space to achieve a solution.

The Sobolev space for each solution variable and test function are:

ρ ∈ H0 :=

{
ρ : Ω→ R :

∫
Ω

ρ2 dΩ <∞
}

(2.154)

δρ ∈ H0 :=

{
δρ : Ω→ R :

∫
Ω

δρ2 dΩ <∞
}

(2.155)

q ∈ H1 :=

{
q : Ω→ R :

∫
Ω

q2 + (q′)2 dΩ <∞
}

(2.156)

v ∈ H1 :=

{
v : Ω→ Rd :

∫
Ω

v2 + (v′)2 dΩ <∞
}

(2.157)

δv ∈ H1 :=

{
δv : Ω→ Rd :

∫
Ω

(δv)2 + (δv′)2 dΩ <∞
}

(2.158)

w ∈ H1 :=

{
w : Ω→ Rd :

∫
Ω

w2 + (w′)2 dΩ <∞
}

(2.159)

The arbitrary test functions are approximated by piece-wise shape functions, i.e.:

q ≈
N∑
i=1

qiψ
ρ
i (2.160)

δρ ≈
N∑
j=1

δρjψ
ρ
j (2.161)

δv ≈

⎡⎢⎢⎣
N∑
l=1

δvxl ψ
vx
l

N∑
m=1

δvymψ
vy
m

⎤⎥⎥⎦ (2.162)

To solve equations (2.152) and (2.153), they must be formulated into matrix form, i.e.

Âx = b. For simplicity, this is shown below for a 2D case of a single species where Dirichlet

boundary conditions for velocity and density are assumed to be applied along all boundaries.

It should be mentioned that this method can be applied the same for multiple species in 3D

space. Substituting in the Bubnov-Galerkin method into equation (2.152) and expanding:

−
∫
Ωe

δρvn · ∇q + ρnδv · ∇q dΩe =

∫
Ωe

ρnvn · ∇q dΩe (2.163)
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−
∫
Ωe

N∑
j=1

[
δρjψ

ρ
j v

n
x

N∑
i=1

qi
∂ψρ

i

∂x

]
+

N∑
j=1

[
δρjψ

ρ
j v

n
y

N∑
i=1

qi
∂ψρ

i

∂y

]

+
N∑
l=1

[
ρnδvxl ψ

vx
l

N∑
i=1

qi
∂ψρ

i

∂x

]
+

N∑
m=1

[
ρnδvymψ

vy
m

N∑
i=1

qi
∂ψρ

i

∂y

]
dΩe

=

∫
Ωe

ρnvnx

N∑
i=1

qi
∂ψρ

i

∂x
+ ρnvny

N∑
i=1

qi
∂ψρ

i

∂y
dΩe (2.164)

where i, j, l, and m are the components of the degrees of freedom (dofs), N is the maximum

number of dofs, and ψρ, ψvx , and ψvy are the Lagrangian shape functions, and ρn, vnx , and v
n
y

are the nodal values from the previous solution, Due to the fact that qi can take any value,

it can be pulled out of the integral like so:

−
�
�
�
�N∑

i=1

qi

∫
Ωe

N∑
j=1

δρjψ
ρ
j v

n
x

∂ψρ
i

∂x
+

N∑
j=1

δρjψ
ρ
j v

n
y

∂ψρ
i

∂y

+
N∑
l=1

ρnδvxl ψ
vx
l

∂ψρ
i

∂x
+

N∑
m=1

ρnδvymψ
vy
m

∂ψρ
i

∂y
dΩe

=

�
�
�
�N∑

i=1

qi

∫
Ωe

ρnvnx
∂ψρ

i

∂x
+ ρnvny

∂ψρ
i

∂y
(2.165)

Resulting in equation:

−
∫
Ωe

N∑
j=1

δρjψ
ρ
j v

n
x

∂ψρ
i

∂x
+

N∑
j=1

δρjψ
ρ
j v

n
y

∂ψρ
i

∂y

+
N∑
l=1

ρnδvxl ψ
vx
l

∂ψρ
i

∂x
+

N∑
m=1

ρnδvymψ
vy
m

∂ψρ
i

∂y
dΩe

=

∫
Ωe

ρnvnx
∂ψρ

i

∂x
+ ρnvny

∂ψρ
i

∂y
(2.166)

Equation (2.152) has now been transformed into the matrix form K̂(−δu) = f , where index
i refers to the row of the matrix, indices j, l, and m refer to the column of the matrix, and

δρ, δvx, and δvy are the unknowns being solved for.

The same approach is now applied to (2.153), except to maintain readability the element
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contribution will only be shown in vector notation, i.e.:

δψρ =
N∑
j=1

δρjψ
ρ
j (2.167)

δψv =

⎡⎢⎢⎣
N∑
l=1

δvxl ψ
vx
l

N∑
r=1

δvyrψ
vy
r

⎤⎥⎥⎦ (2.168)

ψw =

⎡⎢⎢⎣
N∑
k=1

wx
kψ

vx
k

N∑
p=1

wy
pψ

vy
p

⎤⎥⎥⎦ (2.169)

It should be remembered that for a single gas the partial viscosity equals the dynamic viscos-

ity, which is not a function of density. Substituting the above equations into equation (2.153):

−
∫
Ωe

∇ψw :

(
(δψρvn ⊗ vn + ρnδψv ⊗ vn + ρnvn ⊗ δψv) + δψρRTmix

M
Î

−η
(
2∇sδψ

v − 2

3
(∇ · δψv )̂I

))
+ψw ·

((
−ηK̂−1

εδψv

−β̂
(
δψρ|εvn|εvn + ρn

εvnεδψv

|εvn|
εvn + ρn|εvn|εδψv

))
+ δψρg

)
dΩe

=

∫
Ωe

∇ψw :

(
ρnvn ⊗ vn + ρn

RTmix

M
Î− η

(
2∇sδψ

v − 2

3
(∇ · δψv )̂I

))
ψw ·

((
−ηK̂−1

εvn − β̂ρn|εvn|εvn
)
+ ρng

)
dΩe (2.170)

Similarly as before the terms:
N∑
k=1

wx,k and
N∑
p=1

wy,p can be pulled out of the integrals. Due to

the fact that they are arbitrary values they can be canceled out. This leaves equation (2.153)

in the form:

−
∫
Ωe

∇Ψw :

(
(δψρvn ⊗ vn + ρnδψv ⊗ vn + ρnvn ⊗ δψv) + δψρRTmix

M
Î

−η
(
2∇sδψ

v − 2

3
(∇ · δψv )̂I

))
+Ψw ·

((
−ηK̂−1

εδψv

−β̂
(
δψρ|εvn|εvn + ρn

εvnεδψv

|εvn|
εvn + ρn|εvn|εδψv

))
+ δψρg

)
dΩe

=

∫
Ωe

∇Ψw :

(
ρnvn ⊗ vn + ρn

RTmix

M
Î− η

(
2∇sδψ

v − 2

3
(∇ · δψv )̂I

))
Ψw ·

((
−ηK̂−1

εvn − β̂ρn|εvn|εvn
)
+ ρng

)
dΩe (2.171)
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Ψw =

[
ψvx
k

ψ
vy
p

]
(2.172)

Now equation (2.153) is in matrix form, where indices k and p are for the column of the

matrix, indices j, l, and m are for the row of the matrix, and δρ and δv are the unknowns

being solved for.

In summary, the weakened form of the governing equations implemented in OpenFCST

are:

−
∫
Ωe

δFmassα · ∇Ψq
α dΩ

e +

∮
Γe

Ψq
αδFmassα · n dΓe

=

∫
Ωe

F n
massα · ∇Ψ

q
α dΩ

e −
∮
Γe

Ψq
αF

n
massα · n dΓe (2.173)

−
∫
Ωe

∇Ψw
α :
(
δF̂momα + δPαÎ− δτ̂α

)
+Ψw

α · (δF porα + δψρ
αg + δDα) dΩ

e

+

∮
Γe

(
δF̂momα + δPαÎ− δτ̂α

)
Ψw

α · n dΓe

=

∫
Ωe

∇Ψw
α :
(
F̂

n

momα
+ P n

α Î− τ̂ n
α

)
+Ψw

α ·
(
F n

porα + ψρ
αg +D

n
α

)
dΩe

−
∮
Γe

(
F̂

n

momα
+ P n

α Î− τ̂ n
α

)
Ψw

α · n dΓe (2.174)

δFmassα = δψρ
αv

n
α + ρnαδψ

v
α (2.175)

Fmassα = ρnαv
n
α (2.176)

δF̂momα = δψρ
αv

n
α ⊗ vnα + ρnαδψ

v
α ⊗ vnα + ρnαv

n
α ⊗ δψv

α (2.177)

F̂momα = ρnαv
n
α ⊗ vnα (2.178)

δPα = δψρ
α

RTmix

Mα

(2.179)

Pα = ρnα
RTmix

Mα

(2.180)

δτ̂α = δηα

(
2∇sv

n
α −

2

3
(∇ · vnα)̂I

)
+ ηα

(
2∇sδψ

v
α −

2

3
(∇ · δψv

α)̂I

)
(2.181)

τ̂α = 2ηα∇sv
n
α −

2

3
ηα∇ · vnαÎ (2.182)

δF porα =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 in Ωc

− K̂
−1
ε (vnαδηα + ηαδψ

v
α)

− β̂
(
δψρ

α|εvnα|εvnα + ρnα
εvnαεδψ

v
α

|εvnα|
εvnα

+ ρnα|εvnα|εδψv
α

) in Ωp

(2.183)
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F porα =

{
0 in Ωc

−ηαK̂
−1
εvnα − β̂ρnα|εvnα|εvnα in Ωp

(2.184)

δDα =
N∑

β=1

(δPαPβ + PαδPβ)D̂αβ(v
n
β − vnα) + PαPβD̂αβ(δψ

v
β − δψv

α) (2.185)

Dα =
N∑

β=1

PαPβD̂αβ(v
n
β − vnα) (2.186)

D̂αβ =
(
PtD

eff
αβ

)−1

Î (2.187)

ε =

{
1 in Ωc

0 < ε ≤ 1 in Ωp

(2.188)

Ψq
α = ψρ

α,i (2.189)

δψρ
α =

N∑
j=1

δρα,jψ
ρ
α,j (2.190)

δψv
α =

⎡⎢⎢⎣
N∑
l=1

δvxα,lψ
vx
α,l

N∑
r=1

δvyα,rψ
vy
α,r

⎤⎥⎥⎦ (2.191)

Ψw
α =

[
ψvx
α,k

ψ
vy
α,p

]
(2.192)

2.7 Implementation

2.7.1 Discretization

OpenFCST utilizes the deal.II FEA library [100, 101] for handling the grid, global and

adaptive refinement, finite element shape functions, and linear solvers. Due to limitations

with the deal.II FEA library used by OpenFCST only quadrilaterals and quadrilateral prisms

are able to be used in 2D and 3D respectively.

For incompressible flows Reddy remarks, “In order to prevent an overconstrained system

of discrete equations, the interpolation used for pressure must be at least one order lower

than that use for the velocity field” [99]. Donea and Huerta make a similar suggestion for

compressible flows, but add that this is not a requirement like it is for incompressible flows

[102]. Taylor-Hood elements [103] match this criteria and are known to give a stable solution

for incompressible flows in the Stokes flow regime. In conclusion, first order and second order

Lagrange shape functions will be used for the density and velocity test functions respectively.
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2.7.2 Linear Solver

Due to the nonlinear nature of the equations and stability issues when trying to use an

iterative solver direct solvers were used instead. The direct solvers UMFPACK (Unsymmetric

MultiFrontal Package) [104] and MUMPS (MUltifrontal Massively Parallel sparse direct

Solver) [105, 106] were used. UMFPACK is a direct solver for solving nonsymmetric matrices

using the multifrontal LU factorization. UMFPACK has been found to be extremely stable

at solving problems in OpenFCST, however it is not capable of solving the equations in

parallel. As a result, it can be slow for larger problems, as is the case for 3D problems.

Recently, MUMPS, a parallel solver, has been integrated into OpenFCST. MUMPS is

controlled in deal.II through the PETSc (Portable, Extensible Toolkit for Scientific Compu-

tation) library [107–109]. As well, when deal.II uses PETSc for parallel computing it also

requires p4est [110] and METIS [111]. p4est and METIS are used by deal.II to distribute

large meshes across multiple processors when performing parallel computing.

MUMPS was not used for running all simulations because at times there have been

stability issues when solving some problems. For example, the stability has been found to

be dependent on the number of threads used to solve the problem. The mesh structure has

also been found to be factor, as at times by simply changing the mesh MUMPS either has

an easier or more difficult time solving the problem. Finally, another believed to be factor

in stability is the convection term as simulations that are done only in porous layers have

shown to be more stable than those that do not. For single species simulations, MUMPS has

been found to be more stable when equation (2.173) is multiplied by 10−4. In cases when

MUMPS has stability problems, UMFPACK has been used to solve the problem on a single

thread.

2.7.3 Numerical Implementation

The numerical implementation of the isothermal compressible multi-component mass trans-

port equations were implemented into OpenFCST by Valentin Zingan and Chad Balen.

Valentin Zingan derived the equations and implemented the isothermal compressible multi-

component mass transport equation class. Chad Balen re-derived all volume averages, lin-

earization, and weak formulations of the governing equations to confirm that they were

correct. Chad Balen then went and rebuilt the equation and application class so the code

was generalized to be able to run any problem. During this time, Chad Balen extended the

viscous stress tensor term, as Valentin Zingan had assumed constant dynamic viscosity for

each species. To do this Chad Balen implemented Wilke and Kerkhof and Geboers’ viscosity

models to account for the partial viscosity being a function of density in the viscous stress

tensor.
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Chapter 3

Mass Transport Simulations and
Validation

3.1 Introduction

To ensure that the governing equations were implemented correctly results were compared

against either experimental, numerical, or analytical results previously done in literature.

The first benchmark compares numerical results for a lid driven cavity problem. Lid driven

cavity simulations are common for testing fluid flow due to shear from the uniform movement

of a lid. Next a backward-facing step simulations was compared to experimental data. A

backward-facing step problem provides validation for convective terms by determining the

separation point in the flow and comparing to experimental data. These experiments are

highly controlled such that the flow can be assumed to be 2D and fully developed. Next a

simulation of the mass transport in the through-plane direction of a GDL was performed by

comparing results to experimental values. This was done to validate the volume averaging

and accuracy of the model when handling a channel and porous media domain simultane-

ously. Finally, a Stefan tube diffusion simulation was performed and results were compared

to the analytical Maxwell-Stefan solution. This test provides confirmation that the govern-

ing equations can accurately describe this purely diffusive type of mass transport, as well as

the multi-component aspect of the governing equations.

3.2 Lid Driven Cavity

Lid driven cavity flow is a very common numerical simulation used for validating fluid flow

software. This is because the square geometry and boundary conditions are simple to im-

plement and accurate results can be achieved quickly to compare against the work of others.

The fluid flow provides interesting results as the shearing effect from the uniform velocity

of the moving lid results in multiple vortices forming inside the square cavity. Validation
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was done by comparing numerical results of the velocity profiles from OpenFCST along the

geometric centers against the tabulated numerical results of Ghia et al. [112].

3.2.1 Domain

A 2D square domain was considered. Figure 3.1 displays a schematic of the domain con-

sidered. The moving lid is represented by a constant velocity along the upper wall of the

domain, while the rest of the boundaries are treated as walls. The one issue with the bound-

ary conditions is that they do not provide any necessary information about the density of the

fluid. To resolve this, a small segment of the mesh along the lower boundary has a density

boundary condition applied instead. Ghia et al. used uniform meshes of either 128× 128 or

256× 256 cells. To best compare numerical results an initial mesh of 128× 128 cells is used,

then the mesh is globally refined and final values of the 256 × 256 cell mesh were used for

comparison to Ghia et al.

Figure 3.1 – Lid driven cavity domain (not to scale)

Ghia et al. reported results for a range of Reynolds numbers from 100 ≤ Re ≤ 10000.
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The Reynolds number is defined as:

Re =
ρULid dh

η0
(3.1)

where ULid is the uniform velocity along the top wall (cm s−1), and dh is the hydraulic

diameter. For this case, the hydraulic diameter is the length of one side of the square, i.e.

1 cm. It was found that convergence was more easily achieved if density was held constant,

and the velocity of the upper boundary was changed to give the necessary Reynolds number.

Air was selected as the gas species and the temperature and pressure was held constant at

293.15K and 101 325Pa.

3.2.2 Boundary Conditions

In a lid driven cavity flow the fluid is pulled across the top of the cavity resulting in flow due

to shearing forces. During this process no flow leaves the cavity, so this can be represented

by prescribing a uniform velocity in the x-direction while using 0 cm s−1 in the y-direction.

This is represented mathematically as:

vx = ULid on x ∈ [0.0, 1.0], y = 1.0 (3.2)

vy = 0 cm s−1 on x ∈ [0.0, 1.0], y = 1.0 (3.3)

where ULid is 15.05, 60.21, 150.5, and 481.7 cm s−1 for Reynolds numbers of 100, 400, 1000,

and 3200 respectively.

The side walls and bottom walls had a no-slip and no-penetration boundary condition

prescribed, i.e. vx = vy = 0 cm s−1. A density boundary condition was also required for

a convergent unique solution. This was done by applying a Dirichlet density boundary

condition on a small segment of the lower boundary adjacent to the origin, expressed as:

ρ = 0.001 204 g cm−3 on x ∈ [0.0, 0.0625], y = 0.0 (3.4)

3.2.3 Results

Figure 3.2 displays the normalized velocity profiles along the geometric center of the domain

for each Reynolds number. To properly compare velocity profiles with the data from Ghia et

al. the velocity in the solutions was normalized by dividing by ULid. In Figure 3.2, the velocity

profiles in the x and y-direction were actually taken along different planes. The x-component

of velocity was plotted along the vertical geometric center of the cavity, i.e. along the y-axis

at x = 0.5, while the y-component of velocity was plotted along the horizontal geometric

center of the cavity, i.e. along the x-axis at y = 0.5. These planes, for each component of

the velocity, are shown on Figure 3.1.

45



Figure 3.2 shows good agreement with the tabulated values from Ghia et al. There are

two points where there is a discrepancy from the results of Ghia et al. In Figure 3.2d) the

x-component of velocity near the center of the square shows a jump from the expected linear

profile of this region. Ghia et al. makes no mention of this odd jump in the x-component

of velocity near the center. As well, their own figures, that graphically display the velocity

profiles, do not display this. Instead they say, “The near-linearity of these velocity profiles

in the central core of the cavity is indicative of the uniform vorticity region that develops

here for large Re” [112]. This suggests that this data point is the result of a mistake in the

table data and not representative of the actual velocity they obtained at this point.

(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure 3.2 – Comparison of Ghia et al. numerical results and implementation of Kerkhof-
Geboers equations in OpenFCST for a lid driven cavity flow for low Reynolds
numbers
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The other discrepancy is in Figure 3.2b) where Ghia et al. gave a value of (0.9063,−0.23827)
for the y-component of velocity. This point does not follow the trend for the y-component

of velocity in this region and once gain is not displayed in their graphical representation of

the data points. Further this jump does not appear at higher or lower Reynolds numbers,

rather a linear profile is also seen in these regions.

With the exception of these two points the results from the simulation done in OpenFCST

show very good approximation to that of Ghia et al. A maximum error in the velocity

components compared to Ghia et al.’s reported results was found to be 0.05 cm s−1, the

points associated with the largest error were the data points closest to the walls. This error

is most likely attributed to sharp gradients near the wall surfaces where a much finer mesh

is required. Differences in values can be attributed to the different numerical schemes used

to solve the governing equations. Ghia et al. used a finite difference method with an upwind

differencing scheme on the convective terms, which can lead to artificial diffusion.

Figure 3.3 displays the contours and magnitude of velocity profile for the domain of the lid

driven cavity simulation at a Reynolds number of 3200. Figure 3.3 shows good agreement

with the work of Ghia et al., as it shows all the same features as Ghia et al.’s contour

plot. These results suggest that the Kerkhof and Geboers equations have been implemented

correctly.

Figure 3.3 – Lid driven cavity contours and velocity magnitude, Re = 3200
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3.3 Backward-facing Step

Flow separation is a phenomenon where the boundary layer detaches from the object re-

sulting in a recirculation region where vortices form. Armaly et al. [113] provides data for

a wide range of Reynolds number (70 < Re < 8000). They also setup the experiment such

that at low Reynolds numbers (Re ≲ 400) the flow is purely 2D and enters the experiment

as fully developed and leaves fully developed. These results are therefore ideal to validate

the governing equations.

3.3.1 Domain

For simplicity only a 2D simulation was considered, and quantitative comparisons were done

with Armaly et al.’s experimental data up to a Reynolds number of 400. Figure 3.4 displays

a schematic of the domain considered. With the exception of the entrance length to the

backward-facing step length, these dimensions are the same as those used by Armaly et al.

They designed the experiment such that the velocity profile before the backwards step was

always 2D and fully developed from 70 < Re < 8000. To reduce computational cost, the

correct parabolic velocity profile was prescribed at the inlet.

Figure 3.4 – Backward-facing step domain (not to scale)

The full exit length of the channel after the backwards step, was considered to ensure

that the flow achieves fully developed flow far down from the backwards step. A much more

refined mesh was used in the first 15 cm after the backwards step. This was because this

region is where flow is most likely to separate based on Armaly et al.’s experimental results.

Figure 3.5 shows the mesh for the entrance and a portion of the separation region for the

backward-facing step simulation. An initial level of global refinement was performed on this

mesh before numerically solving. Adaptive refinment was used, where 30% of the cells with
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the largest error where refined at each adaptive step. Adaptive refinement was done five

times giving a final mesh of at least 168 000 cells.

Figure 3.5 – Backward-facing step entrance and a portion of the separation region of mesh

Armaly et al. reports all experimental data as a function of the Reynolds number, for this

reason any gas species, density, and velocity can be used as long as they produce the same

Reynolds number. The Reynolds number for a backward-facing step is defined as follows:

Re =
ρUavg dh

η0
(3.5)

where Uavg is the average inlet velocity (cm s−1). For a backwards-facing step the hydraulic

diameter is equivalent to twice the height of the channel inlet, i.e. dh = 1.02 cm. Air was

used as the gas in the backward-facing step at a temperature and pressure of 293.15K

and 101 325Pa. This gave a constant density and viscosity for all Reynolds numbers in

the simulation, and as a result the velocity at the inlet was adjusted to give the necessary

Reynolds number.

3.3.2 Boundary Conditions

A parabolic velocity profile was prescribed at the inlet as follows:

vx(y) = Umax(−7.321006 + 22.189349 y − 14.792899 y2) on x = −3, y ∈ [0.49, 1.01] (3.6)

vy = 0 cm s−1 on x = −3, y ∈ [0.49, 1.01] (3.7)

where Umax is the maximum velocity at the center of the parabola (cm s−1). The Reynolds

number was used to determine the required average velocity, then the relation Umax = 3
2
Uavg

was used to calculate the maximum velocity.

A Dirichlet density boundary condition was prescribed at the outlet. As mentioned

previously, air was assumed to be at a temperature and pressure of 293.15K and 101 325Pa.

This gives a density at the outlet of:

ρ = 0.001 204 g cm−3 on x = 50, y ∈ [0.00, 1.01] (3.8)

Finally, for all other boundaries a no-slip and no-penetration boundary conditions was

applied, i.e. ux = uy = 0 cm s−1.
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3.3.3 Results

To validate the implementation of the governing equations the ratio of the lower reattachment

length, x1, to the height of the backwards-facing step, S, was compared to experimental

results for Re < 400. The reattachment length was obtained during post-processing using

Paraview [114]. The x-component of velocity was plotted along the x-axis at y = 0.001 cm,

and the position where the velocity intercepted 0 cm s−1 was determined.

The backward-facing step results are shown in Figure 3.6. At a Reynolds number of

approximately 400 a secondary separation region appears along the upper channel wall,

resulting in the flow no longer being 2D. For this reason, only experimental data below a

Reynolds number of 400 was compared. For Reynolds numbers less than 350, the numerical

results show good agreement with the experimental values. Similarly to Armaly et al.’s

own numerical results, between 350 ≤ Re ≤ 400 the numerical results under-predicted

the reattachment length from the experimental data. Although grid independence was not

performed for these results, it should be noted that Armaly et al’s numerical results where

obtained in the grid independent region for Re≤ 400 with a grid density of 45 by 45. This

is significantly less nodes than the dofs used to solve this problem here.

Figure 3.7 displays the magnitude of velocity profile for the entrance and separation

region for a Reynolds number of 390. Figure 3.7 shows a parabolic velocity profile in the

entrance region and begins to become fully developed after the separation region as expected

from Armaly et al.’s results. As well, the separation region can clearly be seen.

3.4 Permeability of a GDL

The anisotropic properties of a gas diffusion layer (GDL) was recently tested at the Energy

Systems Design Laboratory (ESDL) [115, 116]. Mangal used a diffusion bridge to determine

the through-plane permeability of a GDL [115, 116]. The domain consists of two different

materials with volume averaging required in the GDL layer. This tests the governing equa-

tions ability to be valid in two different domains, and confirms volume averaging was applied

correctly. Mangal’s data for a Toray 090 (untreated) GDL with a thickness of 262 µm was

used for validation, as this sample has the most data provided for the necessary boundary

conditions.

The through-plane permeability experiment determined the material properties of the

GDL in its thickness direction. This was done by varying the flow rate at the inlet between

0 and 2Lmin−1 in 10 equal intervals. The pressurized nitrogen then flowed through the

GDL to the low pressure channel, which was open to ambient conditions of approximately

298.15K and 101 000Pa. This setup allowed for the pressure difference between the high
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Figure 3.6 – Comparison of experimental results and implementation of Kerkof-Geboers equa-
tions for a backward-facing step

Figure 3.7 – Backward-facing step magnitude of velocity profile at Re = 300

and low pressure channels to be determined. Using this information with a 1D model of the

governing equations in the GDL Mangal calculated the through-plane permeability. This

permeability with the boundary conditions discussed below were used, and the model was

validated by comparing the inlet pressure from the simulations to the experimental values.
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3.4.1 Material Properties

The porosity and permeability are required for the Toray 090 (untreated) GDL. Mangal

determined experimental values assuming a 1D model of the diffusion bridge. When Mangal

determined the permeability and he did not account for volume averaging in his equations.

This leads to a discrepancy between the permeability tensor values Mangal obtained, from

those that are required for OpenFCST. As a result, based on equation (2.101) the following

permeability tensors were used instead:

K̂ = εK̂Mangal =

⎡⎣7.125× 10−8 0.0 0.0
0.0 7.125× 10−8 0.0
0.0 0.0 6.0× 10−8

⎤⎦ (3.9)

β̂ =
β̂Mangal

ε2
=

⎡⎣2222 0.0 0.0
0.0 2222 0.0
0.0 0.0 4558

⎤⎦ (3.10)

where the subscript K̂Mangal and β̂Mangal represents the intrinsic and forchheimer perme-

ability tensor values reported by Mangal in [115, 116] respectively.

3.4.2 Domain

Figure 3.8 displays a schematic of the domain considered. For the experiments, Mangal

stacked three GDLs on top of each other, and reported a thickness of 0.083 cm for the Toray

090 (untreated). In the numerical simulations this was represented in the simulation by a

single GDL of the equivalent thickness and no contact effects between the the individual

GDL layers was assumed. The diffusion bridge consists of two long rectangular channels.

Resulting in fully developed flow before entering the GDL stack and far down the channel

after leaving the stack. In the experiment, Mangal laminated three square GDLs on top of

each with a circular hole on both side of the lamination sheet. This allowed for the nitrogen

to pass through a circular hole in the lamination sheet and across the GDL. In the numerical

simulations this is represented by the the two channels being separated by a cylindrically

shaped GDL. This cylindrical GDL has a diameter of 0.95 cm and a height of 0.083 cm. To

reduce computational expense, less of the channel was considered in the entrance region, and

a parabolic profile was prescribed as the flow should be fully developed before it reaches the

GDL. A symmetric boundary condition was also applied, reducing the domain considered

by half.

The initial mesh used can be seen in Figure 3.9. Adaptive refinement was used, where

10% of the cells with the largest error where refined at each adaptive step. The reason for

not using 30%, as done in previous simulations, is because this is a 3D simulation and using

10% has a similar effect as using 30% in 2-dimensions, i.e. the number of dofs approximately
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Figure 3.8 – Domain for through-plane diffusion bridge with a cylindrically shaped GDL (not
to scale)

doubles at each refinement level. To be more precise, in the 3D case it is closer to a factor

of 1.75 rather than 2. Adaptive refinement was done three times giving a final mesh of

approximately 37 500 cells.

(a) Mesh in XZ-plane (b) Mesh in YZ-plane

Figure 3.9 – Initial mesh for the through-plane permeability simulation

3.4.3 Boundary Conditions

A parabolic velocity profile was prescribed at the inlet as follows:

vx(z) = Umax(−1.002225− 28.3 z − 100 z2) on x = −1.5, y ∈ [−0.75, 0], (3.11)

z ∈ [−0.2415,−0.0415]

vy = vz = 0 cm s−1 on x = −1.5, y ∈ [−0.75, 0], (3.12)

z ∈ [−0.2415,−0.0415]

where Umax is 16.67, 33.33, 50.00, 66.67, 83.33, 100.0, 116.7, 133.3, 150.0, and 166.67 cm s−1

for flow rates of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0Lmin−1 respectively. As

previously discussed, Umax is the maximum velocity at the center of the parabola and can

be related to the average velocity calculated from the flow rate at the inlet.

A Dirichlet density boundary condition was prescribed at the outlet. As mentioned

previously, nitrogen was assumed to be at an approximate temperature and pressure of
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293.15K and 101 000Pa. This gives a density at the outlet of:

ρ = 0.001 141 g cm−3 on x = 50, y ∈ [0.00, 1.01] (3.13)

Only half of the domain was considered, so a symmetric boundary condition for the z-

component of velocity was prescribed along this boundary. The boundary condition can be

represented mathematically as:

∂vz
∂z

= 0 on x ∈ [−1.5, 1.5], y ∈ [−0.2415, 0.2415], z = 0.0 (3.14)

Finally, for all other boundaries a no-slip and no-penetration boundary conditions was

applied, i.e. ux = uy = 0 cm s−1.

3.4.4 Results

To validate the model the pressure determined at the inlet from the simulations were plot-

ted against the different flow rates and compared to the experimental results. Figure 3.10

displays the through-plane permeability results from the experiment and simulation. Man-

gal reported that the error, as reported by the manufacturers, in the pressure transducers

is 0.05%. The numerical results agree with the experimental values, validating the gov-

erning equations. As well, this confirms that the use of a 1D model for determining the

through-plane permeability of the GDL is accurate.

Figure 3.11 displays the total pressure and velocity profiles at the symmetric boundary

surface. The pressure drop occurs entirely through the GDL and there is no significant drop

in pressure through the channels themselves. The velocity profiles show a circulation region

at the far end of the GDL-channel interface region. Figure 3.12 gives a better visualization of

why this is occurring. The flow is circulating around the edge of the GDL-channel interface,

and then moving towards the center of this interface. It should be noted that the 1D model

never accounted for these velocity effects that occur in channel effects into account and still

show accurate comparable results to the numerical simulations.
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Figure 3.10 – Comparison of experimental results and implementation of Kerkof-Geboers
equations for through-plane permeability of a GDL
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(a) Total Pressure (Pa)

(b) Magnitude of velocity (cm s−1)

(c) X-component of velocity (cm s−1)

(d) Y-component of velocity (cm s−1)

Figure 3.11 – Numerical results in XZ-plane at origin for through-plane permeability simula-
tion at 2.0Lmin−1
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Figure 3.12 – X-component of velocity in XY-plane at z = −0.1415 cm for through-plane
permeability simulation at 2.0Lmin−1

3.5 Stefan Tube Diffusion

Stefan tube experiments are useful for experimentally determining the diffusion coefficients

between species. They also serve as good experimental data for validating the multi-

component mass transport aspect of the governing equations. Due to the flow in the Stefan

tube not containing significant inertial, convection, or shear stress effects a 1D analytical

solution to the Maxwell-Stefan equations can be derived that shows good approximation to

the experimental data.

Carty and Schrodt [117] experimentally investigated the isothermal steady-state diffusion

of an acetone-methanol-air mixture in a Stefan tube to determine the validity of the Maxwell-

Stefan equations. Since their intention was validating the Maxwell-Stefan equations, they

provide all the necessary data and boundary conditions to reproduce their results numerically.

The reason Carty and Schrodt used an acetone-methanol-air mixture was because of the

dissimilarities between the binary diffusion coefficients for all gas species, so the problem

cannot be simplified to a binary diffusion problem.

3.5.1 Domain

Figure 3.13a) displays a schematic of the domain. For the experimental data the length of

the Stefan tube was 24.25 cm. However, when Carty and Schrodt plotted their data they

used a length of 23.8 cm to remove entrance effects. The boundary conditions assume no

entrance effects, for this reason in the simulations a Stefan tube length of 23.8 cm was used.

The width of the Stefan tube in the experiment was 5.08 cm.

If polar coordinates are used, the system can be assumed to be axisymmetric and a 2D

domain can be considered. Due to the fact that only the Cartesian coordinates form of
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Kerkhof and Geboers’ model has been implemented, then a 3D simulation would normally

be required. Markham and Rosenberger determined from numerical simulations that radial

deviations deviated from the 1D model by less than 1% up to a Peclet number of 1 [118]. For

this reason, it is expected that if Cartesian coordinates are used to represent this problem

then the results should still collapse to the results of the 1D, which the model is being

compared to. As well, symmetry was applied, so only the right half of the domain of the

tube was considered. Stefan tube experiments are setup so that the diffusing species exist

as a liquid at the bottom of the tube and evaporate out of the tube. This can create

problems in numerical simulations, since the domain of the problem changes with time as

the liquid-vapour interface level changes. Carty and Schrodt took care to ensure that as

the acetone-methanol liquid mixture evaporated, the liquid-vapour interface level was held

constant. For this reason, this does not need to be considered.

The initial mesh used can be seen in Figure 3.13b). Adaptive refinement was used,

where 30% of the cells with the largest error where refined at each adaptive step. Adaptive

refinement was done four times giving a final mesh with 6288 cells.

(a) Domain (not to scale) (b) Mesh

Figure 3.13 – Stefan tube domain and mesh
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3.5.2 Boundary Conditions

Carty and Schrodt maintained a constant temperature and pressure of 328.5K and 745.2mmHg

(99 335.15Pa [119]), and considered air as a pure component due to the diffusion coefficients

for acetone and methanol in oxygen and nitrogen being nearly the same. Three species are

therefore considered for diffusion: acetone, methanol, and air.

Carty and Schrodt assumed that there was neither acetone or methanol at the entrance,

only air. As discussed earlier, the length of tube used was 23.8 cm to remove entrance effects

so Dirichlet density boundary conditions were prescribed for all gas species at the inlet as

follows:

ρacetone = ρmethanol = 0g cm−3 on x ∈ [0, 2.54], y = 23.8 (3.15)

ρair = 1.0534× 10−3 g cm−3 on x ∈ [0, 2.54], y = 23.8 (3.16)

Carty and Schrodt estimated the molar fractions of acetone and methanol at the liquid-

vapour interface to be 0.319 and 0.528 respectively. Dirichlet boundary conditions for the

acetone and methanol were prescribed at the liquid-vapour interface. Since air cannot pass

into the liquid-vapour interface, a Dirichlet velocity no-slip and no-penetration boundary

condition was prescribed. This gave the following set of boundary conditions at the liquid-

vapour interface.

ρacetone = 6.7381× 10−4 g cm−3 on x ∈ [0, 2.54], y = 0 (3.17)

ρmethanol = 6.1530× 10−4 g cm−3 on x ∈ [0, 2.54], y = 0 (3.18)

vx,air = vy,air = 0 cm s−1 on x ∈ [0, 2.54], y = 0 (3.19)

As mentioned previously by Mills and Chang [79], a diffusion slip boundary condition is

required along the wall of the tube. However, OpenFCST does not currently have the ability

to apply a diffusion slip boundary condition. Mills and Chang, also mention that when a

no-slip boundary condition is used 2D flow features do not significantly effect the radial

concentration [79]. As a result, a no-slip and no-penetration Dirichlet velocity boundary

conditions was prescribed along the Stefan tube wall for all gas species. This is not expected

to significantly effect the concentration along the Stefan tube, but will most likely effect the

velocity distributions. For this reason, only the concentration along the center of the Stefan

tube was considered in the analysis. The no-slip and no-penetration boundary conditions

are expressed as:

vacetone = vmethanol = vair = 0 cm s−1 on x = 2.54, y ∈ [0, 23.8] (3.20)

The final side is the center of the Stefan tube so a symmetry boundary condition was applied
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for all gas species. This is expressed as:

∂vx
∂x

⏐⏐⏐
acetone

=
∂vx
∂x

⏐⏐⏐
methanol

=
∂vx
∂x

⏐⏐⏐
air

= 0 on x = 0, y ∈ [0, 23.8] (3.21)

3.5.3 Gas Properties

Certain properties of each gas are required for calculating the partial viscosities and diffusion

coefficients. Table 3.1 displays molar mass, collision diameter, and the molecular energy

parameter divided by the Boltzmann constant for these gases implemented in OpenFCST.

Table 3.1 – Gas Properties for Carty and Schrodt Stefan Tube Experiment

Property Acetone Methanol Air Units Reference

M 58.078 32.042 28.97 gmol−1 [45]
σ 4.6 3.626 3.711 Å [86]
ε/k 560.2 481.8 78.6 K [86]

3.5.3.1 Results

Figure 3.14 displays a comparison of Carty and Schrodt’s experiment data with the imple-

mentation of Kerkhof and Geboers’ mass transport equation. The molar fractions for the gas

species calculated from the analytical solution of the 1D Maxwell-Stefan equations, provided

by Carty and Schrodt [117], are also shown.

Figure 3.14 shows that there is very little difference between the solutions from Maxwell-

Stefan and Kerkhof-Geboers. In fact, the maximum molar fraction error, from the Maxwell-

Stefan analytical solution, is 0.007 (1.6%). This validates that the new model was imple-

mented correctly to account for multi-species mass transport.
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Figure 3.14 – Comparison of Maxwell-Stefan and Kerkhof-Geboers equations for a three
species Stefan tube experiment
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Chapter 4

Cathode Electrode Model Governing
Equations

4.1 Introduction

In the previous chapters Kerkhof and Geboers’ multi-component equations were volume

averaged, linearized, and the weak formulations were derived. The implemented equations

in OpenFCST were then validated against benchmark tests. In this chapter, the equations are

coupled to electrochemical reaction kinetics so they can be used in fuel cell simulations. This

was done by the addition of sink/source terms to the continuity equations of the gas species

to account for electro-chemical reactions. Electron conducting and electrolyte potentials

control the rate of the reaction. Therefore, electrolyte and electron transport equations are

also implemented.

4.2 Cathode Model

4.2.1 Governing Equations

The ORR occurring in the cathode CL is:

1

2
O2 + 2H+ + 2e− ⇌ H2O (4.1)

This electro-chemical reaction shows that oxygen, protons, and electrons, are consumed while

water is formed in the CL. In the previous chapters, electro-chemical reactions were not

considered. To resolve this a source/sink term must be applied to the continuity equations

for each species as follows:

∇ · Fmassα = Sα (4.2)
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where Sα is a source/sink term for species α. For the case of a cathode PEFC the source/sink

terms for each species are:

SO2 =

{
−MO2

4F
J in ΩCL

0 in Ωc, ΩGDL, ΩMPL

(4.3)

SH2O =

{
MH2O

2F
J in ΩCL

0 in Ωc, ΩGDL, ΩMPL

(4.4)

SN2 = 0 (4.5)

where F is Faraday’s constant (96 485Cmol−1), and J is the volumetric current density

(A cm−3). The volumetric current density is a function of the oxygen concentration, mem-

brane electrical potential, ϕm, and solid electrical potential, ϕs.

Although the source/sink terms are now defined for the production/consumption of water

and oxygen there are two new unknowns, i.e. ϕm and ϕs. Transport equations are required

for these two new species, i.e. protons and electrons. As derived by Secanell [18], the protonic

and electronic transport equations are expressed respectively as:

∇ · (σeff
m ∇ϕm) = −

Jm
F

=
J

F
(4.6)

∇ · (σeff
s ∇ϕs) = −

J

F
(4.7)

where σeff
m and σeff

s are the effective protonic and electronic conductivity respectively, and

Jm is the volumetric current density in the electrolyte phase.

4.2.2 Closure Equations

4.2.2.1 Kinetic Model

The ORR is a complex reaction with many elementary reaction steps that researchers are

continuously trying to understand better. Wang et al. proposed the double trap kinetic

model to more accurately account for this reaction [120]. Moore extended the model such

that oxygen depletion and backwards reactions were better accounted for [20]. A more

detailed description of this model can be found in [21].

The micro-scale structure of the CL is modeled assuming an ionomer covered catalyst

particle (ICCP) structure. Figure 4.1 displays a diagram of the ICCP model. For the ICCP

model it is assumed that:

1. The local CL microstructure is idealized by a single spherical carbon particle covered

uniformly with platinum and is surrounded by a thin ionomer film, and
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2. The oxygen is assumed to first dissolve into the ionomer film, then diffuse through

the film, and finally react at the surface of the carbon particle where the platinum is

located.

A more detailed description of this model can be found in [25, 121].

Figure 4.1 – Carbon-platinum structure in the ICCP model

4.2.2.2 Effective Transport Properties

In section 2.4.3.2, the effect of a porous domain on the diffusion coefficients was discussed.

Similarly, the other transport properties must also account for the differences in a porous

domain through the porosity and tortuosity. Like the diffusion coefficient, this was done

using percolation theory, i.e. equation (2.85) but applied to other properties instead of Dαβ.

4.2.2.3 Viscosity Model

The partial viscosity model used was Wilke’s model. This is because the partial viscosity of

the gases in the cathode can be modeled fairly accurately with Wilke’s model as discussed in

section 2.4.3.3.1. As well, the simulations are already computationally expensive with three

gas species and the use of the ICCP micro-scale model.
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4.2.3 Linearization

The linearization is straightforward, and is performed in a similar fashion as shown in section

2.5.2. The only difference is that an additional source/sink term is included. The final results

for the linearization of the transport equations are expressed as:

∇ · δFmassα − ζαδJ = −∇ · F n
massα + ζαJ (4.8)

∇ · (σeff
m ∇δϕm)−

1

F
δJ = −∇ · (σeff

m ∇ϕm) +
1

F
J (4.9)

∇ · (σeff
s ∇δϕs) +

1

F
δJ = −∇ · (σeff

s ∇ϕs)−
1

F
J (4.10)

δJ =
∂J

∂ϕm

δϕm +
∂J

∂ϕs

δϕs +
∂J

∂ρO2

δρO2 (4.11)

ζα =

⎧⎪⎨⎪⎩
−MO2

4F
if α = O2

MH2O

2F
if α = H2O

0 if α = N2

(4.12)

where equation (4.8) is the linearized form that describes the transport of the individual gas

species, and equation (4.10) is the linearized form that describes the transport of the the

electrons and protons.

4.2.4 Weak Formulation

The weak formulation for the mass transport of the individual species is done the same as

in section 2.6. The only difference is that there is now a source term included. Typically,

the process used in weakening a PDE in FEA is by transfering the derivatives from the

solution variable to the test function. This is typically done by using equation (2.148) and

the divergence theorem. Due to the fact that there is no derivatives on this source term

there is no need to do any of this to the source term. As a result, the derivation of the weak

formulations is done the same as in section 2.6 with the extra source term. As well, using

the same rational as in section 2.7.1, first order Lagrangian shape functions were used for

the membrane and solid electrical potential. In summary, the final set of weak formulations

used to solve this multi-component multi-physics problem are expressed as:

−
∫
Ωe

δFmassα · ∇Ψq
α + ζαΨ

q
αδJ dΩe +

∮
Γe

Ψq
αδFmassα · n dΓe

=

∫
Ωe

F n
massα · ∇Ψ

q
α + ζαΨ

q
αJ

n dΩe −
∮
Γe

Ψq
αF

n
massα · n dΓe (4.13)
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−
∫
Ωe

σeff
m ∇δψm · ∇Ψq

m +
1

F
Ψq

mδJ dΩe +

∮
Γe

σeff
m Ψq

m∇δψm · n dΓe =∫
Ωe

σeff
m ∇ϕn

m · ∇Ψq
m +

1

F
Ψq

mJ
n dΩe −

∮
Γe

σeff
m Ψq

m∇ϕn
m · n dΓe (4.14)

−
∫
Ωe

σeff
s ∇δψs · ∇Ψq

s −
1

F
Ψq

sδJ dΩe +

∮
Γe

σeff
s Ψq

s∇δψs · n dΓe =∫
Ωe

σeff
s ∇ϕn

s · ∇Ψq
s −

1

F
Ψq

sJ
n dΩe −

∮
Γe

σeff
s Ψq

s∇ϕn
s · n dΓe (4.15)

−
∫
Ωe

∇Ψw
α :
(
δF̂momα + δPαÎ− δτ̂α

)
+Ψw

α · (δF porα + δψρ
αg + δDα) dΩ

e

+

∮
Γe

(
δF̂momα + δPαÎ− δτ̂α

)
Ψw

α · n dΓe

=

∫
Ωe

∇Ψw
α :
(
F̂

n

momα
+ P n

α Î− τ̂ n
α

)
+Ψw

α ·
(
F n

porα + ψρ
αg +D

n
α

)
dΩe

−
∮
Γe

(
F̂

n

momα
+ P n

α Î− τ̂ n
α

)
Ψw

α · n dΓe (4.16)

δFmassα = δψρ
αv

n
α + ρnαδψ

v
α (4.17)

Fmassα = ρnαv
n
α (4.18)

δJ =
∂J

∂ϕm

δϕm +
∂J

∂ϕs

δϕs +
∂J

∂ρO2

δρO2 (4.19)

δF̂momα = δψρ
αv

n
α ⊗ vnα + ρnαδψ

v
α ⊗ vnα + ρnαv

n
α ⊗ δψv

α (4.20)

F̂momα = ρnαv
n
α ⊗ vnα (4.21)

δPα = δψρ
α

RTmix

Mα

(4.22)

Pα = ρnα
RTmix

Mα

(4.23)

δτ̂α = δηα

(
2∇sv

n
α −

2

3
(∇ · vnα)̂I

)
+ ηα

(
2∇sδψ

v
α −

2

3
(∇ · δψv

α)̂I

)
(4.24)

τ̂α = 2ηα∇sv
n
α −

2

3
ηα∇ · vnαÎ (4.25)

δF porα =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 in Ωc

− K̂
−1
ε (vnαδηα + ηαδψ

v
α)

− β̂
(
δψρ

α|εvnα|εvnα + ρnα
εvnαεδψ

v
α

|εvnα|
εvnα

+ ρnα|εvnα|εδψv
α

) in Ωp

(4.26)

F porα =

{
0 in Ωc

−ηαK̂
−1
εvnα − β̂ρnα|εvnα|εvnα in Ωp

(4.27)

66



δDα =
N∑

β=1

(δPαPβ + PαδPβ)D̂αβ(v
n
β − vnα) + PαPβD̂αβ(δψ

v
β − δψv

α) (4.28)

Dα =
N∑

β=1

PαPβD̂αβ(v
n
β − vnα) (4.29)

D̂αβ =
(
PtD

eff
αβ

)−1

Î (4.30)

ε =

{
1 in Ωc

0 < ε ≤ 1 in Ωp

(4.31)

Ψq
α = ψρ

α,i (4.32)

Ψq
m = ψm,i (4.33)

Ψq
s = ψs,i (4.34)

δψρ
α =

N∑
j=1

δρα,jψ
ρ
α,j (4.35)

δψm =
N∑
j=1

δϕm,jψm,j (4.36)

δψs =
N∑
j=1

δϕs,jψs,j (4.37)

δψα,v =

⎡⎢⎢⎣
N∑
l=1

δvxα,lψ
vx
α,l

N∑
r=1

δvyα,rψ
vy
α,r

⎤⎥⎥⎦ (4.38)

Ψw
α =

[
ψvx
α,k

ψ
vy
α,p

]
(4.39)

4.3 Base Parameters

Tables 4.1 and 4.2 display the properties for the GDL and MPL used in the simulations

respectively. It is difficult to measure properties for the MPL separate from the GDL. In

the following simulations through-plane permeability data reported by Lalit et al. [122] was

used. In their study, SGL 34 BA (only GDL) and SGL 34 BC (GDL+MPL included) were

investigated. The SGL 34 BA was used to determine the properties of the GDL alone. Using

these values for the GDL and assuming constant velocity through the porous medium they

estimated the properties of the MPL in the SGL 34 BC. The values used in this work were

taken by averaging the results from the two samples reported by Lalit et al. Lalit et al. only

considered the through-plane permeability, so for in-plane permeability data, values reported

by Mangal [115] for an SGL 34 BA were used. The permeability values shown in Tables 4.1
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Table 4.1 – Composition and transport properties of the GDL

Parameter Variable Value

Gas diffusion layer type DesignFibrousGDL

Generic data

Porosity ε 0.83 [122]
Permeability XX (cm2) KXX 2.1746× 10−7 [122]
Permeability YY (cm2) KY Y 1.7098× 10−7 [115]

Composition

Anisotropic transport true
Method effective transport properties in pores Percolation
Method effective transport properties in solid phase Percolation

Gas transport properties

Porosity threshold X εth,X 0.118 [132]
Porosity threshold Y εth,Y 0.118 [132]
Porosity network constant X µX 0.785 [97, 133]
Porosity network constant Y µY 0.521 [97, 133]

Electron transport properties

Electrical conductivity X (S cm−1) σs,X 16.03 [132]
Electrical conductivity Y (S cm−1) σs,Y 272.78 [132]
Solid network threshold X εth,X 0.0 [11, 22]
Solid network threshold Y εth,Y 0.0 [11, 22]
Solid network constant X µX 1.5 [11, 22]
Solid network constant Y µY 1.0 [11, 22]

and 4.2 have been corrected for volume averaging as shown in section 3.4.1.

Table 4.3 and 4.4 display the properties for the CL used in the simulations. A thickness

of 10 µm for the CL was chosen as this is similar in magnitude to other papers in literature

[26, 34, 123–128]. There are not many reported values for the permeability of the CL. Ismail

et al. [129], Kim et al. [130], and Sui et al. [131] used a value of 1.0× 10−9 cm2. This value

seems questionable considering that Kim et al. and Sui et al. used the same permeability

for the GDL, and Ismail et al. used a through-plane GDL permeability of the same order

of magnitude. Eikerling predicted a range for the absolute permeability of the CL between

approximately 0.375× 10−14 and 2× 10−14 cm2. Due to the range of values used in papers

depending on the source, the CL permeability was varied and compared to see the effect of

this value on results.
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Table 4.2 – Composition and transport properties of the MPL

Parameter Variable Value

Micro porous layer type DesignMPL

Generic data

Porosity ε 0.4 [132]
Permeability XX (cm2) KXX 5.4× 10−10 [122]
Permeability YY (cm2) KY Y 5.4× 10−10 [122]

Composition

Anisotropic transport false
Method effective transport properties in pores Percolation
Method effective transport properties in solid phase Percolation

Gas transport properties

Porosity threshold εth 0.118 [132]
Porosity network constant µ 2 [134]

Electron transport properties

Electrical conductivity (S cm−1) σs 88.84 [132]
Solid network threshold εth 0.118 [132]
Solid network constant µ 2.0 [134]
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Table 4.3 – Composition and transport properties of the CL

Parameter Variable Value

Catalyst layer type MultiScaleCL
Catalyst type Platinum
Catalyst support type CarbonBlack
Electrolyte type Nafion
Kinetics type DoubleTrapKinetics

MultiScaleCL

Microscale type ICCP
Radius (nm) 50 [121]
Film Thickness (nm) 5.0 [121]
Use non equilibrium BC true
Non Equilibrium BC Rate constant 0.001 [121]

Composition

Method effective transport properties in pores Percolation
Method effective transport properties in solid phase Percolation
Method effective transport properties in electrolyte phase Iden11
Platinum loading on support (%wt) 46 [132]
Platinum loading per unit volume (mg cm−3) 400 [22]
Electrolyte loading (%wt) 30 [132]
Method to compute active area given
Active area (cm2 cm−3) 2.0× 105 [26, 132]

Gas transport properties

Porosity threshold εth 0.259 [11]
Porosity network constant µ 2.0 [11]

Electron transport properties

Solid network threshold εth 0.118 [11, 22]
Solid network constant µ 2.0 [11, 22]
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Table 4.4 – Bulk properties of CL materials

Parameter Variable Value

Nafion R⃝

Method to compute proton conductivity Iden11
Henry’s Law Constant for Oxygen (Pa cm3mol−1) 3.1664× 1010 [123, 135]
Henry’s Law Constant for Hydrogen (Pa cm3mol−1) 6.94× 1010 [135]

CarbonBlack

Density (g cm−3) 1.69 [136]
Electrical conductivity (S cm−1) 88.84 [132]

Platinum

Method for kinetics parameters (ORR) Double trap
Density (g cm−3) 21.5 [137]
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4.4 Through the Channel Cathode Model

OpenFCST already has a Cathode model implemented that uses a Fickian transport model.

Results from this model are compared to the new CathodeKG model. The two models are

as objectively compared as possible by prescribing the same boundary conditions and using

the same base parameters. The differences are:

1. The Cathode model assumes isobaric conditions, as a result it does not account for

pressure drops due to the permeability of the porous layers,

2. The Cathode model assumes an infinitely dilute solution, so only the diffusion coeffi-

cient of Oxygen-Nitrogen is required for the transport of oxygen,

3. The Cathode model only accounts for oxygen transport and using Fick’s law, therefore

it solves for the molar fraction of oxygen for determining transport.

The two models are first compared at an oxygen molar fraction of 1% (before humidifi-

cation) at the inlet. This was done to validate the CathodeKG model. At this concentration

the infinitely dilute solution assumption should be valid, and the two models should coin-

cide with one another. At this oxygen concentration, the CL permeability was also varied

to see the effects. Next, the inlet oxygen concentration is varied to determine the validity

of the infinitely dilute solution at typical inlet oxygen concentrations is studied. Next, the

change in density is analyzed. Finally, the flow profile of each of the individual gas species

is discussed.

4.4.1 Domain

Figure 4.2 displays a schematic of the domain considered. Colours are used to show the

different materials, the GDL is blue, MPL is gray, and the CL is red. Symmetry boundary

conditions were applied such that only half of the channel and bipolar plate were considered.

The width of the channel and bipolar plate are based on the dimensions of the bipolar

plate used in the ESDL, which is 0.031′′ (0.079 cm). The initial mesh used can be seen in

Figure 4.3. The MPL and CL are composed of eight and ten cells each along the x-direction

respectively.

4.4.2 Boundary Conditions

4.4.2.1 CathodeKG Model

A Dirichlet density boundary condition for each species was prescribed at the inlet. The

protons and electrons are unable to pass into the gas channel, so a no flux boundary condition
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Figure 4.2 – Through-channel PEFC cathode domain (not to scale)

is prescribed for these species. This is expressed mathematically as follows:

ρ0O2
, ρ0N2

, ρ0H2O
on x = 0.0326, y ∈ [0.0395, 0.079] (4.40)

NH+ · n =N e− · n = 0 on x = 0.0326, y ∈ [0.0395, 0.079] (4.41)

where NH+ and N e− are the flux of the protons and electrons respectively. The densities of

the individual species are calculated from ideal gas law in OpenFCST using the Operating

Conditions class at 101 325Pa, 353.15K, 50% relative humidity (RH), and an initial oxygen

mole fraction (prior to humidification) of 0.01, 0.10, and 0.21.

A symmetric boundary condition, for each species, was prescribed along the upper and

lower boundary. The boundary condition can be represented mathematically as,

NH+ · n =N e− · n = 0 on x ∈ [0, 0.0326], y = 0 and 0.079 (4.42)∮
Γ

(F̂mom,α + PαÎ− τ̂α)wα · n dΓ = 0 on x ∈ [0, 0.0326], y = 0 and 0.079 (4.43)

For all other boundaries a no-slip and no-penetration boundary conditions was applied,
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Figure 4.3 – Initial mesh for the through-channel PEFC cathode simulation

i.e:

vO2 = vN2 = vH2O = 0 cm s−1 (4.44)

For the protons and electrons Dirichlet boundary conditions are prescribed. Knowing that

only protons can pass through the membrane, and electrons pass through the bipolar plate

current collector these boundary conditions are prescribed as follows:

ϕm = 0 on x = 0, y ∈ [0, 0.079] (4.45)

N e− · n = 0 on x = 0, y ∈ [0, 0.079] (4.46)

NH+ · n = 0 on x = 0.079, y ∈ [0, 0.0395] (4.47)

ϕ0
s on x = 0.0326, y ∈ [0, 0.0395] (4.48)

N e− · n = 0 on x = 0, y ∈ [0.0395, 0.079] (4.49)

where ϕ0 is the voltage (V) applied.

4.4.2.2 Cathode Model

The same boundary conditions for the protons and electrons are prescribed in the Cathode

model. The difference between the two model’s is the gas species boundary conditions.
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This is because no momentum equation is used in the Cathode model, resulting in a purely

diffusive transport, so a velocity boundary condition is not necessary. Further, the Cathode

model uses molar fraction, x, to describe mass transport instead of density. The resulting

boundary conditions for oxygen in this model are no flux at impermeable walls and a Dirichlet

boundary condition at the inlet. This is expressed mathematically as follows:

x0O2
on x = 0.0326, y ∈ [0.0395, 0.079] (4.50)

∇xO2 · n =0 on x = 0.0326, y ∈ [0, 0.0395] (4.51)

∇xO2 · n =0 on x = 0, y ∈ [0, 0.079] (4.52)

Neither water vapour or oxygen is accounted for in the Cathode model, as mentioned pre-

viously, because it is assumed that the oxygen is infinitely dilute in the nitrogen. As well,

nitrogen is inert in the reaction and is assumed not to pass through the membrane. As a

result, at steady-state there would be no diffusion of nitrogen using the Cathode model.

Symmetry boundary conditions are also prescribed along the upper and lower boundary

as discussed in the previous section. This is expressed mathematically for the oxygen molar

fraction as follows:

∇xO2 · n = 0 on x ∈ [0, 0.0326], y = 0 and 0.079 (4.53)

4.4.3 Grid Independence and Adaptive Refinement Study

A global grid independence study (GIS) was performed on the Cathode and CathodeKG

models to confirm that the mesh is in the grid independent region. The CL, MPL, and

GDL were one cell thick and two cells were used in the y-direction. For the GIS an oxygen

inlet concentration of 21%, CL permeability of 1.0× 10−13 cm2, and the current density at

0.2V was used. This was done because at these conditions the results are in the mass

transport region, resulting in the largest gradients across the cathode. For this reason, it is

assumed that if the mesh is in the grid independent region for this case it will be in the grid

independent region for all cases analyzed.

An adaptive refinement study (ARS) was also performed. This is because adaptive re-

finement is preferable to use in order to reduce the computational expense of the simulations,

as only the cells with the largest error are refined. When the adaptive refinement is set such

that 30% of the cells with the largest error are refined, this leads to an approximate doubling

of the number of degrees of freedom. The ARS was done under the same conditions as the

GIS.

Figures 4.4 and 4.5 display the GIS and ARS for the Cathode and CathodeKG model

respectively. The GIS solutions are systematically and asymptotically converging for the
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Cathode and CathodeKG simulations. This suggests that the mesh is in the grid independent

region. Figure 4.4 shows that adaptive refinement is refining areas that do not significantly

effect the current density for a large portion of the ARS, while Figure 4.5 displays that

adaptive refinement is beneficial for the CathodeKG model. The initial mesh used, as shown

in Figure 4.3, is much more refined and has approximately 20 times more dofs then the mesh

used in this GIS and ARS. Based on these results the mesh in Figure 4.3 should be in the

grid independent region when running simulations. Based on these observation one level

of adaptive refinement was used for the CathodeKG model simulations, while two levels of

global refinement were used for the Cathode model simulations. Giving a final mesh with

11 931 and 15 050 dofs for the Cathode and CathodeKG model’s respectively.

Figure 4.4 – Through-channel global grid independence study (GIS) and adaptive refinement
study (ARS) for the Cathode model

4.4.4 Results

As stated in section 4.4.2.1 the inlet is at a temperature and pressure of 353.15K and

101 325Pa. As well, the O2-N2 mixture is humidified resulting in an RH of 50% before

entering the inlet. To properly compare the effects of changing the CL permeability, results

were compared when the current density was the same. This is because the current density
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Figure 4.5 – Through-channel global grid independence study (GIS) and adaptive refinement
study (ARS) for the CathodeKG model

defines the amount of oxygen consumed and water produced. This results in similar fluxes for

each species through the cathode at steady-state. Dr. Shukla has provided polarization curve

results that were used in [136] for comparison to the different models. This experimental

data was performed under similar conditions with an SGL 24 BC instead of the SGL 34 BC

used in the following simulations. The SGL 24 BC and SGL 34 BC have similar properties,

but the SGL 34 BC was used in simulations because the properties were more available.

Testing protocol and MEA properties for the experimental data can be found in [2]. Input

parameters, other than GDL thickness are similar to experiments as discussed in [26].

4.4.4.1 Molar Fraction With 1% Oxygen (Before Humidification) at Inlet

Figure 4.6 displays a polarization curve comparing the two models. For the numerical polar-

ization curves, every fifth point is shown with a marker. This was done so the figure would

not become unreadable from having data points every 0.01V. The Cathode model is able

to do the full polarization curve without difficulty, however the CathodeKG model has diffi-

culties at lower permeabilities. This is seen by the 1.0× 10−14 cm2 case where the developed

model is unable to determine the current for cell voltages below 0.80V. A possible reason
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for this will be discussed later. The experimental data from Shukla et al. [136] is iR-free and

corrected for cross-over because the CathodeKG model does not include PEM ohmic losses

and contact resistances.

Figure 4.6 – Polarization curves comparing the Cathode model to the CathodeKG model at
various CL permeabilities

Figure 4.6 validates the infinitely dilute solution at low oxygen concentration. As one

would expect, at low oxygen concentrations the dominant form of transport for the oxygen

is diffusion and both the Cathode and CathodeKG models nearly coincide for the entire

polarization curve. The small difference between results for permeabilities 1.0× 10−10 and

1.0× 10−11 cm2 in the CathodeKG model suggest that the model is in the limiting case

when Darcy’s law is not a significant factor in the transport. As the permeability of the

CL decreases the permeability’s influence on the performance increases. This is the result of

more frictional losses due to the low permeability of the CL accounted for by Darcy’s law.

The simulation results shown in Figure 4.6 follows a similar trend as the experimental data,

but the simulation results differ considerably from experimental data. This is most likely

because of unique effects occurring at 1% oxygen, as even at the lowest current densities

mass transport effects have a significant effect along the entire channel.

Figure 4.7 displays the oxygen molar fraction on a horizontal line along the middle of
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the cathode for different models and permeabilities at a current density of 0.06 cm2. Using

the CathodeKG model with different permeabilities Figure 4.7 displays that the oxygen

concentration in the MPL and GDL is independent of the CL permeability. At the same

current density, the molar fraction of oxygen in the CL using the CathodeKG model is

always lower than the Cathode model. As the CL permeability decreases so does the molar

fraction of oxygen in the CL. This is most likely because the Darcy term couples the pressure

and velocity to the permeability term. As the permeability decreases the CL becomes more

impermeable. This results in slower velocities, thus less oxygen is able to penetrate into the

CL. This explains why at a CL permeability of 1.0× 10−14 cm2 the CathodeKG model has

difficulty converging to a solution as the CL is becoming more impermeable.

Figure 4.7 – Molar fraction of oxygen at y = 0.0395 cm for various permeabilities at
0.06A cm−2

Considering the entire cathode domain, Figures 4.8a) through c) display the oxygen

molar fraction through the cathode using the Cathode model. At high cell voltages when

little oxygen is required to produce the small currents necessary, there is an abundance of

oxygen in the CL. As the current density increases more oxygen is consumed, till the CL

is “starved” of oxygen because it is unable to reach the CL fast enough for the reaction to

occur. As well, the lowest concentrations of oxygen occur close to the bottom boundary of
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the Cathode. This intuitively makes sense as this point is furthest from the channel and is

more difficult for oxygen to be transported to this location.

Figure 4.8d) through i) displays the oxygen through the cathode using the CathodeKG

model at different permeability values. Similar trends are noticed as in the Cathode model

discussed above. Comparing Figure 4.8 a) to d), b) to e) and c) to f) the Cathode and Cath-

odeKG model have almost identical molar fractions throughout the entire cathode. Small

differences in scales are due to a lower oxygen molar fraction in the CL of the CathodeKG

model as shown earlier in Figure 4.7. Figures 4.8g) through i) also have the same oxygen

molar fraction in the CL and GDL, however it is difficult to see due to how much less oxygen

is available in the CL at the same current density.

Figure 4.7 showed that the oxygen molar fraction on a horizontal line along the middle

of the cathode in the MPL and GDL is independent of the CL permeability when the same

current density is considered. Figure 4.9 shows the oxygen, water vapour, and nitrogen

molar fraction in the MPL and GDL. These figures show this same trend extends to the

entire MPL and GDL for each gas species.

Figure 4.10 shows the molar fraction of each gas species in the CL. The figures are scaled

in the x-direction by a factor of 30 to increase the visibility. The molar fraction of oxygen and

water vapour do not use the same scale for each CL permeability, because the spans for each

figure are so small, that using the same scale will make the others appear to have a constant

molar fraction. Oxygen molar fraction displays different distributions throughout the CL

depending on the permeability. At high permeabilities, it is more difficult to transport the

oxygen to the bottom boundary furthest away from the inlet. At low permeabilities, it

is more difficult for the oxygen to be transported into the CL and oxygen reacts at the

GDL-CL interface. This results in wasted platinum reaction sites preventing higher current

densities. The nitrogen molar fraction shows a similar distribution as the oxygen at different

permeabilities. The gradient in nitrogen molar fraction is most likely because it is an inert

gas and the nitrogen molecules are being dragged out of the electrode by the water vapour.
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(a) 0.025A cm−2 (b) 0.06A cm−2 (c) 0.084A cm−2

(d) 0.025A cm−2 (e) 0.06A cm−2 (f) 0.084A cm−2

(g) 0.025A cm−2 (h) 0.06A cm−2 (i) 0.084A cm−2

Figure 4.8 – Comparison of oxygen molar fraction in cathode at the same currents densi-
ties under different parameters: Cathode model (top), CathodeKG model with a
CL permeability of 1.0× 10−10 cm2 (middle), and CathodeKG model with a CL
permeability of 1.0× 10−13 cm2 (bottom)
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(a) 1.0× 10−10 cm2 (b) 1.0× 10−13 cm2

(c) 1.0× 10−10 cm2 (d) 1.0× 10−13 cm2

(e) 1.0× 10−10 cm2 (f) 1.0× 10−13 cm2

Figure 4.9 – CathodeKG model oxygen (top), nitrogen (middle), and water vapour (bottom)
molar fraction in the MPL and GDL at different permeabilities at 0.06A cm−2
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(a) 1.0× 10−10 cm2 (b) 1.0× 10−12 cm2 (c) 1.0× 10−13 cm2

(d) 1.0× 10−10 cm2 (e) 1.0× 10−12 cm2 (f) 1.0× 10−13 cm2

(g) 1.0× 10−10 cm2 (h) 1.0× 10−12 cm2 (i) 1.0× 10−13 cm2

Figure 4.10 – CathodeKG model oxygen (top), nitrogen (middle), and water vapour (bottom)
molar fraction in the CL at different permeabilities at 0.06A cm−2
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In a reverse trend from oxygen and nitrogen, Figures 4.10g) through i) display that more

water exists in the CL at lower permeabilities. Using the same argument that oxygen has

a difficult time permeating through the CL at lower permeabilities, water vapour has a

difficult time leaving the CL at lower permeabilities. This further compounds the problem

with oxygen entering the CL, as the water vapour blocks the platinum reaction sites and

prevents the oxygen from permeating into the CL.

Due to the fact that both models assume that water is only in the vapour phase the

relative humidity needs to be considered. If the relative humidity inside the cathode is

above a value of 1.0 then the water is condensing and forming into a liquid, and a two-phase

model would be required to properly model the transport of water inside the cathode. Figure

4.11 shows the relative humidity for the two extreme permeability cases at the lowest voltage

considered (0.2V). At this extreme case, both permeabilities show that the assumption that

water is in the vapour phase is valid.

(a) 1.0× 10−10 cm2 (b) 1.0× 10−13 cm2

Figure 4.11 – Relative humidity in cathode at 0.2V for different CL permeabilities using the
CathodeKG model
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4.4.4.2 Varying the Concentration of Oxygen at the Inlet

Simulations were done to determine the effect of oxygen concentration at the inlet on the

CathodeKG model. Oxygen concentrations of 10% and 21% (before humidification) were

used. 21% was used as the upper limit because this is the molar fraction in air, and typical

fuel cells use air as the source of oxygen for the cathode. 10% was selected because this

point is approximately half-way between 1%, previously studied, and 21%. For these figures,

every other point is shown with a marker. This was done so the figure would not become

unreadable from having data points every 0.025V.

Figures 4.12 and 4.13 display experimental polarization curves from [136] corrected for

membrane Ohmic losses and cross-over losses, and predicted polarization curves from the

Cathode and CathodeKG model at these oxygen inlet concentrations. Once again the per-

meability of the CL was varied to see its effect.

The previous section discussed how at 1% oxygen (before humidification) the transport is

binary diffusion dominated and the two models should converge. This was shown in Figure

4.6 where the predictions at a CL permeability of 1.0× 10−10 cm2 with the CathodeKG

model nearly coincided with the Cathode model. Figures 4.12 and 4.14 once again show

that for a CL permeability of 1.0× 10−10 cm2 the polarization curve is closest to the results

of the Cathode model. However, as the oxygen concentration at the inlet is increased the

difference between the limiting current increases between the two cases. This difference

in limiting currents demonstrates the errors associated with 1) not including a momentum

equation in the cathode, and 2) assuming an infinitely dilute solution of oxygen in nitrogen.

At 21% in the limiting current density region (0.1V) this error is approximately 5.9%. This

value is similar to the difference noticed by Mart́ınez et al. [49] mentioned in section 1.3.1.

Mart́ınez et al. noticed a maximum error of 5% [49] from the Maxwell-Stefan equations,

however they were considering a full MEA in the commercial code STAR CD. As well, it

was the approximated multi-component (AMC) model, which is based on Fick’s law, that

was being compared to the Maxwell-Stefan equations.

Figure 4.14 displays the molar fraction of oxygen on a horizontal line along the middle of

the cathode. Unlike Figure 4.7, which was at 1%, the error of the infinitely dilute solution

assumption begins occurring in the GDL. From Figures 4.13 through 4.14 it is seen that Fick’s

law over-predicts the results as the infinitely dilute assumption becomes less accurate. With

the current Cathode model, the error due to not accounting for Darcy’s law and assuming

an infinitely dilute solution cannot be separated to determine their individual contribution

to the error. For this reason, it would be beneficial if the Cathode model was implemented

with Darcy’s law so these errors can be analyzed individually.

At 10% oxygen (before humidification) the simulation results shown in Figure 4.12 once
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again shows similar trends as the experimental data, but the values are still lower than those

from the simulations. At 21% oxygen (before humidification) the simulation results now

coincide with the experimental data in the Kinetic and Ohmic regions of the polarization

curve. This could be because the oxygen concentration is high and current densities are

sufficiently low such that the oxygen concentration along the channel does not change sig-

nificantly along the channel. Thus, validating the assumption used in through the channel

simulations. The experimental data in Figure 4.13 even shows similar results in the Mass

Transport region of the polarization curve as the simulation results for the 1.0× 10−13 cm2

CL permeability.

Figure 4.12 – Polarization curves comparing the Cathode and CathodeKG model with 10%
oxygen at the inlet (before humidification)

Once again the relative humidity needs to be considered. Figure 4.15 displays the results

for 21% oxygen (before humidification) at the inlet. Figure 4.15 was done at the highest

current density simulated for this case (0.05V) and does not show a relative humidity above

a value of 1.0. These results confirm that the use of a single phase model is acceptable under

the operating conditions simulated.
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Figure 4.13 – Polarization curves comparing the Cathode and CathodeKG model with 21%
oxygen at the inlet (before humidification)

Figure 4.14 – Molar fraction of oxygen at y = 0.0395 cm with 21% oxygen at the inlet (before
humidification) at 1.0A cm−2
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(a) 1.0× 10−10 cm2 (b) 1.0× 10−13 cm2

Figure 4.15 – Relative humidity in cathode at 0.05V for different CL permeabilities using the
CathodeKG model for 21% oxygen (before humidification) at the inlet
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4.4.4.3 Velocity of Individual Gas Species in Cathode

Kerkhof and Geboers’ model predicts the transport of the individual species in the cath-

ode. In this section, the flow profile of the individual gas species is analyzed. Figure 4.16

displays the velocity of the individual gas species in the cathode at 1.0A cm−2 with 21%

oxygen (before humidification) at the inlet. The arrow length is not scaled by the velocity

magnitude, instead the arrows are coloured based on the velocity magnitude. The colour of

the background represents the different layers. This was done so the effects of the species

entering or leaving the different porous layers can more easily be seen. As well, the square

meshing is shown in the background. This was done so the areas selected for refinement can

be seen in relation to the velocity profile.

Figures 4.16a) and b) show the oxygen and water vapour velocities the oxygen. The

oxygen flows towards the CL and the water vapour flows in the opposite direction to leave

through the channel. Both the oxygen and water vapour tend to travel in a straight line near

the upper symmetric boundary. The water near the bottom symmetric boundary gradually

curves to leave through the inlet, while the oxygen displays a similar trend in the opposite

direction to enter the regions with the least amount of oxygen. As well, at the CL-MPL

interface the flow is nearly parallel as the oxygen and water are furthest away from the inlet

and entrance effects have less of an affect on the flow. The magnitude of velocity for the

water vapour is greater than the oxygen near the channel. This is because for every one

oxygen molecules entering the domain there are two molecules of water vapour leaving the

domain. The larger total mass of water vapour leaving the cathode is possibly dragging the

oxygen out of the channel, thus reducing the speed of the oxygen entering. It should be

remembered that, because only the cathode is being modeled, mass is not conserved in the

system. This is because from the ORR occurring in the cathode:

1

2
O2 + 2H+ + 2e− ⇌ H2O (4.54)

that protons are entering the domain from the PEM-CL interface.

Figure 4.16c) displays the velocity of nitrogen. The velocity of nitrogen is significantly

lower than the other species as it is an inert gas. It may be difficult to see all of them, but

there are three recirculation regions in the flow of the nitrogen. These flow profiles are more

easily seen in Figure 4.16d) where the nitrogen streamlines are shown in the cathode. The

recirculation regions are most likely due to the competing effects of the transport of oxygen

and water in the porous layers. Due to the fact that nitrogen is inert in the reaction, at

steady-state it is pulled in the same direction as the species that dominates the flow in that

region. When the nitrogen flows up towards the inlet the water is the significant factor in

determining mass transport. When nitrogen flows down to the lower symmetric boundary,

oxygen is the significant factor in determining mass transport.
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(a) Velocity profile of oxygen (b) Velocity profile of water vapour

(c) Velocity profile of nitrogen (d) Nitrogen streamlines

Figure 4.16 – Velocity of each species in the CathodeKG model at a CL permeability of
1.0× 10−10 cm2 and 1.0A cm−2
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4.4.4.4 Changes in Density

A few models have accounted for the compressibility of gases [70, 77, 138], however it is not

usually discussed significantly. The most that is said on this topic in [70, 77, 138] is that

the density varies so a “compressible gas technique was used to determine the density of the

gas mixture” [138]. Thus far a quantification of the changes in mixture density has not been

reported.

A CL permeability of 1.0× 10−10 cm2 was used as this is the limiting case that most

closely matches the Cathode model. If a lower permeability was used, based on the previous

discussions, it is expected that the the effects in change in density would be even more

significant. Figure 4.17a) displays the change in total density across the cathode at the

limiting current density. The change in total density across the cathode is approximately

8.6%. Figures 4.17b) through d) show the change in partial density throughout the cathode

for each gas species at the limiting current density. The smallest change in partial density

occurs for nitrogen, with a change of approximately 8.8%. The oxygen and water have a

change in partial density across the cathode of 68.6% and 69.7% respectively. The change

in density for oxygen and water vapour is quite significant. Future work should be done

to compare simulations using the classical approach and the new CathodeKG model. Only

then can it be determined how sensitive the transport and performance results are to this

different assumption.
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(a) Total density of the mixture (b) Partial density of oxygen

(c) Partial density of water vapour (d) Partial density of nitrogen

Figure 4.17 – Change in density of CathodeKG model at a CL permeability of 1.0× 10−10 cm2

and 0.05V and 2.92A cm−2
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4.5 Along the Channel Cathode Model

Through the channel simulations assume that there is a sufficient supply of oxygen along the

entire channel. This can only be achieved at very high air flow rates. In reality, air flow rates

are small and more oxygen is available near the entrance of the channel than at the outlet

of the channel. Along the channel simulations aim at predicting the distribution of oxygen

along the entire channel. This means that unlike in the through the channel simulation the

channel, which is dominated by convective transport, must also be included in the domain.

The Cathode model, is unable to consider this domain because it only considers a Fickian

transport model. For this reason, it cannot account for the convective transport in the

channel.

To see the effects of the distribution of oxygen along the channel the flow rate at the inlet

was varied such that λstoic was varied from 2 to 10. A λstoic of one means that all oxygen

entering the channel would be consumed. As λstoic increases there is excess oxygen in the

channel.

4.5.1 Domain

Figure 4.18 displays a schematic of the domain considered. A straight through bipolar plate

design is used, with similar dimensions to those in section 4.4.1. The length of the channel is

based on the dimensions of the bipolar plate used by the ESDL, which is 0.81′′ (2.1 cm). To

reduce computational expense, less of the channel was considered in the entrance and exit

regions, and a parabolic profile was prescribed at the outlet. The final mesh consisted of 8

cells for the each of the different layers in the x-direction.

Figure 4.18 – Along-channel PEFC cathode domain (not to scale)
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4.5.2 Boundary Conditions

For a stable convergent solution it was found that the outlet boundary condition had to be

Dirichlet velocity and the inlet boundary conditions had be a Dirichlet density and normal

shear stress free. At the inlet and outlet a no-flux boundary condition is used for the protonic

and electronic potentials. The outlet boundary conditions are expressed mathematically as

follows:

vy,α(x) = −Umax(1.729104 + 66.08x+ 400x2) on x ∈ [−0.0326,−0.1326], y = 1.15
(4.55)

vx,α = 0 cm s−1 on x ∈ [−0.0326,−0.1326], y = 1.15
(4.56)

NH+ · n =N e− · n = 0 on x ∈ [−0.0326,−0.1326], y = 1.15
(4.57)

where Umax is calculated for different λstoic values based on the calculations shown Appendix

C. The inlet boundary conditions are expressed mathematically as follows:∮
Γ

(
PαÎ− τ̂α

)
wα · n dΓ = 0 on x ∈ [−0.0326,−0.1326], y = −1.15 (4.58)

ρ0O2
, ρ0N2

, ρ0H2O
on x ∈ [−0.0326,−0.1326], y = −1.15 (4.59)

NH+ · n =N e− · n = 0 on x ∈ [−0.0326,−0.1326], y = −1.15 (4.60)

where the densities of the individual species are calculated from ideal gas law by the Operating

Conditions class at 101 325Pa, 353.15K, 50% RH, and an initial oxygen mole fraction (prior

to humidification) of 21%.

For the upper wall the boundary conditions for the protonic and electronic potentials

are done similar to section 4.4.2.1. The difference is that this time there is no bipolar plate

boundary to apply the electronic and protonic potential boundary conditions. Instead the

roof of the channel is treated as the bipolar plate, and this point will be used to regulate the

voltage. As a result, the channel is treated as having an effective electronic conductivity of

1000 S cm−1. The boundary conditions for the bipolar plate boundary and the CL-membrane

interface are expressed mathematically as:

NH+ · n = 0 on x = −0.1326, y ∈ [−1.15, 1.15] (4.61)

ϕs = ϕ0 on x = −0.1326, y ∈ [−1.15, 1.15] (4.62)

ϕm = 0 on x = 0, y ∈ [−1.05, 1.05] (4.63)

N e− · n = 0 on x = 0, y ∈ [−1.05, 1.05] (4.64)

where ϕ0 is the voltage (V) applied.
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Finally, for all other boundaries not mentioned a no-slip and no-penetration velocity

boundary condition and a no flux potential boundary condition was applied, i.e. vO2 =

vN2 = vH2O = 0 cm s−1 and NH+ · n =N e− · n = 0.

4.5.3 Grid Independence and Adaptive Refinement Study

Similar to section 4.4.3 a grid independence study was performed on the CathodeKG model

to confirm that the along the channel mesh is in the grid independent region. A λstoic of 1.78

was used for the GIS and ARS. This λstoic was chosen because the conditions for λstoic = 2

were used and the voltage was lowered to 0.55V. As well, by using a lower λstoic the gradients

are larger. A permeability of 1.0× 10−10 cm2 was used as all results were done with this

permeability. An ARS was then performed on the same mesh to see the effects of using

adaptive refinement compared to global refinement. This is because adaptive refinement

only refines the mesh where the gradients in solution variables are greatest. This reduces

the number of dofs at each refinement level, leading to a less computationally expensive

simulation.

Figure 4.19 displays the results for the GIS and ARS. With the exception of the coarsest

mesh, all grill levels increased asymptotically. Two levels of global refinement were applied

to the mesh before the ARS was performed. This is due to how coarse the initial mesh was.

The ARS also converges towards the same solution as the GIS but at a slower rate. As a

result, it took less computational time to simply perform three levels of global refinement

than to use adaptive refinement and achieve the same accuracy. Based on these results, three

levels of global refinement was used in all the following simulations.

4.5.4 Results

As discussed in section 4.4.4, to make a proper comparison when changing a parameter it is

best to keep the current density the same. A current density of 1.0A cm−2 was chosen, and

the inlet velocity was calculated using the methodology in Appendix C. The problem is that

these calculations are based on inlet velocity, but as seen in section 4.5.2 the velocity needs

to be specified at the outlet for a stable convergent solution. This is a problem because the

velocity and density of oxygen changes along the channel as the oxygen is consumed. For

this reason, an iterative process is required to get the necessary inlet velocity for the required

λstoic. The iterative process was found to take two cycles to converge to the correct λstoic,

and the process used was:

1. Set outlet velocity boundary condition to the value desired at the inlet and scan po-

larization curve to find voltage required for 1.0A cm−2
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Figure 4.19 – Along the channel global grid independence study (GIS) and adaptive refinement
study (ARS) for the CathodeKG model

2. Interpolate voltage to get voltage at 1.0A cm−2 and re-run simulations

3. At 1.0A cm−2 take the difference in velocity at the inlet and outlet and add to outlet

4. Repeat

The final average inlet and outlet velocities for the different λstoic’s are shown in Table 4.5.

Table 4.5 – Inlet and outlet velocities at various λstoic values

λstoic
Average Velocity (cm s−1)

Inlet Outlet

2.0 19.62 20.89
3.0 29.41 30.55
5.0 49.01 49.87
10.0 97.99 98.16

As mentioned in section 2.7.2, MUMPS has stability issues when solving problems in-

volving multiple species with convective transport. For this reason, UMFPACK was used

for all along the channel simulations, which only uses one thread. Lower λstoic values took

longer to solve. In the case of λstoic = 2.0, the final parametric study (four points) to get

the results at 1.0A cm−2 took approximately 9 minutes to run. The polarization curve for a

Qavg,outlet = 0.139 Lmin−1 took approximately six hours to run.
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4.5.4.1 Polarization Curve

Figure 4.20 displays the polarization curves using the determined outlet boundary conditions

from Table 4.5. For the numerical polarization curves, every fifth point is shown with a

marker. This was done so the figure would not become unreadable from having data points

every 0.01V. As well, the flow rates were calculated from the velocities in Table 4.5 assuming

the fuel cell consists of 14 channels as this is the through channel design used in the ESDL.

At high voltages, the current densities in Figure 4.20 coincide and are independent of the

outlet velocity used. This makes sense as the λstoic is very large and so there are no significant

losses from the available amount of oxygen along the channel. This is seen in Figure 4.21

where the λstoic is plotted for different current densities. The results from the through the

channel simulation under the same conditions are also plotted in Figure 4.20. This was done

as the through the channel simulation reflects the polarization curve as λstoic → ∞. This

displays the upper limit that can be achieved as the flow rate in the cathode is increased.

Figure 4.21 displays that at the limiting current there is sufficient oxygen in the channel for

higher current densities. However, this is not possible because of mass transport losses that

prevent the oxygen from enter the CL fast enough for the reaction to occur at higher current

densities.

Figures 4.22 through 4.24 display the molar fraction of the gas species at different λstoic

values. The oxygen molar fraction decreases along the channel, while the water vapour

increases along the channel. This is expected because there is less oxygen available further

downstream as the oxygen is consumed. Similarly, water vapour has the opposite trend

because it accumulates at the outlet as it is being removed from the PEFC. The nitrogen

molar fraction, and by extension partial density, decreases along the channel but because

nitrogen is inert mass is still conserved. This is done by an increase in the velocity of

the nitrogen at the outlet. Figures 4.22 through 4.24 clearly show that the through plane

assumption of constant concentration in the channel is not valid even at λstoic = 10.0. This

is one benefit of along the channel and 3D simulations as they are able to account for this

effect that is not accounted for in through the channel simulations.

RH also needs to be considered to ensure that water is not being formed. If the RH is

above a value of 1 then the water is condensing into a liquid and the assumption that the

water is in the vapour phase is no longer valid. In this case a two-phase model is required

to accurately predict the transport of water. Figure 4.25 displays that the RH in the along

the channel simulation is always below 1 at a current density of 1.0A cm−2. Figure 4.25

suggests that, if water were formed, it would occur in both the channel and porous layers

near the outlet of the channel. Figure 4.26 displays the relative humidity at the limiting

current. Although the RH is below 1 for all cases, the lowest flow rate case has a relative
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humidity very close to one and water is possibly beginning to form.

Figure 4.20 – Polarization curve of the along the channel CathodeKG model at different outlet
speeds

Figure 4.21 – λstoic of the along the channel the Cathode model to the CathodeKG model at
different outlet speeds
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.22 – Along Channel CathodeKG model oxygen molar fractions at 1.0A cm−2 for
various λstoic ratios

99



(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.23 – Along Channel CathodeKG model water vapour molar fractions at 1.0A cm−2

for various λstoic ratios
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.24 – Along Channel CathodeKG model nitrogen molar fractions at 1.0A cm−2 for
various λstoic ratios
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.25 – Relative humidity in cathode at 1.0A cm−2 for different λstoic

102



(a) uavg,outlet = 20.89 cm s−1 (1.685A cm−2)

(b) uavg,outlet = 49.87 cm s−1 (2.378A cm−2)

(c) uavg,outlet = 98.16 cm s−1 (4.174A cm−2)

Figure 4.26 – Relative humidity at the limiting current (0.05V) in the along the channel
CathodeKG model for different average outlet flow rates
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4.5.4.2 Changes in Density

Figure 4.27 displays how the total density changes along the channel of a PEFC. As men-

tioned previously, the typical approach used involves the mass-averaged Navier-Stokes equa-

tions. For this case, the total density of the mixture is what changes. Figure 4.27 shows

that the change in total density is approximately 9.2%, 6.3%, and 5.2% for a λstoic of 2.0,

5.0, and 10.0 respectively.

Kerkhof and Geboers’ model uses a density for each of the individual species. Figures 4.28

through 4.30 display similar results as the through the channel change in density. Similarly

to the results for through the channel, the changes are more significant for the oxygen and

water vapour compared to the nitrogen. The change in density for oxygen and water vapour

ranges from approximately 70 to 30% from λstoic of 2 to 10. Once again, future work should

be done to compare simulations using the classical approach and the new CathodeKG model.

Only then can it be determined how sensitive the transport and performance results are to

this different assumption.
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.27 – Along Channel CathodeKG model total density at 1.0A cm−2 for various λstoic

ratios
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.28 – Along Channel CathodeKG model oxygen partial density at 1.0A cm−2 for
various λstoic ratios
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.29 – Along Channel CathodeKG model water vapour partial density at 1.0A cm−2

for various λstoic ratios
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(a) λstoic = 2.0

(b) λstoic = 5.0

(c) λstoic = 10.0

Figure 4.30 – Along Channel CathodeKG model nitrogen partial density at 1.0A cm−2 for
various λstoic ratios
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work was primarily focused on the implementation and validation of Kerkhof and

Geboers’ model. The equations were implemented into OpenFCST, and validation was

performed using four different benchmark tests. These benchmarks tested that the equations

were implemented correctly and could accurately account for all types of mass transport that

may occur. A lid driven cavity and backward-facing step tests were performed to test that the

equations could correctly account for shear and convection dominated flow respectively. A

diffusion bridge was simulated. This confirmed that the volume averaging was done correctly,

and that the equations are capable of solving a multi-domain problem including a porous

domain. Finally, a Stefan tube simulation confirmed that the equations correctly accounted

for multi-component diffusive transport. This is a major form of transport in the porous

layers of a PEFC.

Kerkhof and Geboers’ equations were then coupled with electrochemical reaction kinetics

to account for the electro-chemical reaction occurring in a PEFC. The CathodeKG model

was then validated against a simple Cathode model already implemented in OpenFCST. This

was done by prescribing an inlet boundary condition where oxygen only consists of 1% of

the mixture before being humidified with water vapour. This was done because the Cathode

model uses Fickian transport for the oxygen by assuming that the oxygen is an infinitely

dilute solution of nitrogen. Under these conditions then the Cathode model’s assumptions

are valid, and should correctly describe the transport of oxygen in a PEFC.

After the CathodeKG model was validated, simulations were run to see the effect of

changing the CL permeability and inlet oxygen concentration in the through-plane direc-

tion. For the case of the along the channel direction simulations, the λstoic was varied. Using

the CathodeKG model it was determined that density varied more for the individual species

compared to the total densities. Kerkhof and Geboers’ equations are able to predict the
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velocity of the individual species in the through-plane direction of the cathode. This al-

lowed for the ability to see that there are possibly three circulation regions in the porous

layers for the transport of nitrogen. The relative humidity was considered to see if liquid

water was forming. At the operating conditions considered, and only in along the chan-

nel simulations, liquid water began to form at high current densities near the outlet of the

channel. This work presents the first implementation in the literature of a PEFC model

including the multi-component mass transport model proposed by Kerkhof and Geboers in

2005 [1, 78]. The model has been used to highlight the effects of multi-component transport

and compressibility.

5.2 Future Work

The implementation of Kerkhof and Geboers’ model has opened new avenues of research

in modeling PEFCs in OpenFCST. These equations allow for both the porous layers and

channel to be considered when modeling. Future work could be done modeling a 3D PEFC

in OpenFCST. Due to the fact that only a cathode was considered this work, future work

could include modeling a full MEA.

The current approach for solving the problem is a brute force method where all equations

are solved simultaneously with a direct solver. This results in a slow and a very computa-

tionally expensive simulation. Part of the reason this approach was taken is because of the

desire to use MUMPS to parallelize the solving of the matrix. This created issues because

this was done through PETSC in deal.II, and currently deal.II does not support block ma-

trices with PETSC. If a solver could solve each block of the matrix separately, then each

equation could be solved with different solvers optimized for each respective equation. One

library that could potentially make this possible is Trilinos [139].

Now that the equations have been shown to be numerically stable future work could

remove various simplifying assumptions. For instance, assumptions 3 and 9 in section 2.2

could be removed to account for non-isothermal transport and the more complex shear stress

model originally proposed. As well, in section 4.5.4.1 liquid water was shown to form in the

cathode under certain conditions. A two-phase model could be implemented that would

correctly account for the transport of water in the liquid and vapour phase.

Future work could also be done to implement the classical approach used by researchers.

This would allow for a direct comparison with the results obtained using Kerkhof and

Geboers’ model in OpenFCST.
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les rivières à fond mobile; Dunod: 1863.

[65] P. Forchheimer, Z.Ver.Deutsch.Ing, 1901, 45, 1788.

[66] D. A. Nield and A. Bejan Convection in porous media; Springer Science & Business

Media: 2006.

[67] H. Brinkman, Applied Scientific Research, 1949, 1, 27-34.

[68] H. Brinkman, Applied Scientific Research, 1949, 1, 81-86.

[69] A. Aiyejina and M. Sastry, Journal of Fuel Cell Science and Technology, 2012, 9,

011011.

[70] T. Berning, D. M. Lu, and N. Djilali, Journal of power sources, 2002, 106, 284–294.

[71] T. Berning and N. Djilali, Journal of the Electrochemical Society, 2003, 150, A1589–

A1598.

[72] V. Gurau, H. Liu, and S. Kakac, AIChE Journal, 1998, 44, 2410–2422.

[73] S. Um, C.-Y. Wang, and K. Chen, Journal of the Electrochemical society, 2000, 147,

4485–4493.

[74] H. Meng and C.-Y. Wang, Journal of the Electrochemical Society, 2004, 151, A358–

A367.

115



[75] S. Shimpalee, S. Dutta, W. Lee, and J. Van Zee, ASME-PUBLICATIONS-HTD, 1999,

364, 367–374.

[76] S. Dutta, S. Shimpalee, and J. Van Zee, Journal of Applied Electrochemistry, 2000,

30, 135–146.

[77] S. Dutta, S. Shimpalee, and J. Van Zee, International Journal of Heat and Mass

Transfer, 2001, 44, 2029–2042.

[78] P. J. Kerkhof and M. A. Geboers, Chemical Engineering Science, 2005, 60, 3129–3167.

[79] A. Mills and B. Chang, Chemical Engineering Science, 2013, 90, 130–136.

[80] A. Faliagas, Chemical Engineering Science, 2015, 123, 665–668.

[81] P. J. Kerkhof, Chemical Engineering Science, 2015, 123, 669 - 673.

[82] R. Salcedo-Dı́az, R. Ruiz-Femenia, P. Kerkhof, and E. Peters, Chemical Engineering

Science, 2008, 63, 4685–4693.

[83] P. D. Neufeld, A. Janzen, and R. Aziz, The Journal of chemical physics, 1972, 57,

1100-1102.

[84] T. A. Davidson A simple and accurate method for calculating viscosity of gaseous

mixtures [microform]; Washington, DC : U.S. Dept. of the Interior, Bureau of Mines,

1993]: 1993.

[85] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird Molecular theory of gases and liquids;

New York, Wiley 1964]; Corrected printing with notes added: 1964.

[86] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell The properties of gases and liquids;

New York : McGraw-Hill, c2001; 5th ed: 2001.

[87] C. R. Wilke, Journal of Chemical Physics, 1950, 18, 517.

[88] P. J. Kerkhof, AIChE Journal, 2011, 57, 1099-1099.

[89] T. Coplen, J.Phys.Chem.Ref.Data, 1997, 26,.

[90] S. Whitaker The method of volume averaging; Dordrecht ; Boston : Kluwer Academic,

c1999: 1999.

[91] V. Zingan, P. Mangal, P. Minev, A. Putz, and M. Secanell, , In preparation, 2016,

.

116



[92] W. G. Gray and P. C. Y. Lee, International Journal of Multiphase Flow, 1977, 3,

333-340.

[93] S. Whitaker, Industrial and Engineering Chemistry, 1969, 61, 14-28.

[94] F. A. Howes and S. Whitaker, Chemical Engineering Science, 1985, 40, 1387-1392.

[95] J. C. Slattery, AIChE Journal, 1967, 13, 1066–1071.

[96] D. Bruggeman, Ann. Phys., 1935, 24, 636–642.

[97] J. Pharoah, K. Karan, and W. Sun, Journal of Power Sources, 2006, 161, 214-224.

[98] M. M. Tomadakis and S. V. Sotirchos, AIChE Journal, 1993, 39, 397–412.

[99] J. N. Reddy An introduction to nonlinear finite element analysis. [electronic resource];

Oxford ; New York : Oxford University Press, 2004: 2004.

[100] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Tur-

cksin, and T. D. Young, Archive of Numerical Software, 2013, 3,.

[101] W. Bangerth, R. Hartmann, and G. Kanschat, ACM Trans. Math. Softw., 2007, 33,

24/1–24/27.

[102] J. Donea and A. Huerta Finite element methods for flow problems; John Wiley & Sons:

2003.

[103] C. Taylor and P. Hood, Computers & Fluids, 1973, 1, 73-100.

[104] T. A. Davis, ACM Trans. Math. Softw., 2004, 30, 196-199.

[105] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, SIAM Journal on Matrix

Analysis and Applications, 2001, 23, 15-41.

[106] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Parallel Computing,

2006, 32, 136-156.

[107] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp,

B. F. Smith, S. Zampini, and H. Zhang “PETSc Web page”, http://www.mcs.anl.

gov/petsc, 2015.

117

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc


[108] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp,

B. F. Smith, S. Zampini, and H. Zhang “PETSc Users Manual”, Technical Report

ANL-95/11 - Revision 3.6, Argonne National Laboratory, 2015.

[109] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith Efficient Management of Par-

allelism in Object Oriented Numerical Software Libraries. In Modern Software Tools in

Scientific Computing ; E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.; Birkhäuser
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Appendix A

Representative Elementary Volume
Averaging Derivations

A.1 Continuity Equation

0 = ⟨∇ · Fmassα⟩ (A.1)

Begin by applying equation (2.55) resulting in:

0 = ∇ · ⟨Fmassα⟩+
1

VREV

∮
Aβγ

Fmassα · nβγ dA (A.2)

Remembering that no penetration is assumed along the boundary of the porous medium

control volume, then the surface integral in equation (A.2) must be zero. Opening Fmassα

the averaging theorem identities can be applied further. This is done by applying equations

(2.52) and (2.48) as follows:

⟨Fmassα⟩ = ⟨ραvα⟩

≈ 1

ε
⟨ρα⟩⟨vα⟩

= ⟨ρα⟩⟨vα⟩f (A.3)

In conclusion, the volume averaged continuity equation can be expressed as:

0 = ∇ · ⟨Fmassα⟩ = ⟨ρα⟩⟨vα⟩f (A.4)

A.2 Momentum Equation

0 = ⟨∇ · (F̂momα + PαÎ− τ̂α)− (ραg +Dα)⟩ (A.5)
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Begin by applying equations (2.50) and (2.57) resulting in:

0 = ∇ · (⟨F̂momα⟩+ ⟨Pα⟩̂I− ⟨τ̂α⟩)

+
1

VREV

∮
Aβγ

(
F̂momα + PαÎ− τ̂α

)
nβγ dA

− (⟨ρα⟩g + ⟨Dα⟩) (A.6)

Remembering that no penetration is assumed along the boundary of the porous medium

control volume, then the F̂momα term in the surface integral in equation (A.6) must be zero.

Now each of the terms must be opened and averaged individually. Beginning with ⟨F̂momα⟩,
equation (2.52) must be applied twice. Followed by equation (2.48) twice to transform the

phase averaged velocities into the correct intrinsic average form as follows:

⟨F̂momα⟩ = ⟨ραvα ⊗ vα⟩

≈ 1

ε
⟨ρα⟩⟨vα ⊗ vα⟩

≈ 1

ε2
⟨ρα⟩⟨vα⟩ ⊗ ⟨vα⟩

=
1

ε
⟨ρα⟩⟨vα⟩f ⊗ ⟨vα⟩

= ⟨ρα⟩⟨vα⟩f ⊗ ⟨vα⟩f (A.7)

Since gases are assumed to be ideal then ⟨Pα⟩ can easily be determined by applying equa-

tion (2.50) where all other terms but density are constants like so:

⟨Pα⟩ = ⟨ραRT ⟩

= ⟨ρα⟩RT (A.8)

The stress tensor term, ⟨τ̂α⟩, and its surface integral are discussed in section 2.4.3.1. The

final term ⟨Dα⟩ is done similarly to ⟨F̂momα⟩ term by using equations (2.50), (2.52), and
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(2.48).

⟨Dα⟩ =

⟨
N∑

β=1

PαPβD̂αβ(vβ − vα)

⟩

=
N∑

β=1

⟨PαPβD̂αβ(vβ − vα)⟩

≈ 1

ε

N∑
β=1

⟨Pα⟩⟨PβD̂αβ(vβ − vα)⟩

≈ 1

ε2

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ − vα⟩)

=
1

ε2

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩ − ⟨vα⟩)

=
1

ε

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩f − ⟨vα⟩f ) (A.9)

In conclusion, the volume averaged momentum equation can be expressed as:

0 = ∇ ·
(
⟨F̂momα⟩+ ⟨Pα⟩̂I− ⟨τ̂α⟩

)
+

1

VREV

∮
Aβγ

(
PαÎ− τ̂α

)
nβγ dA

−
(
⟨ρα⟩g + ⟨Dα⟩

) (A.10)

⟨F̂momα⟩ = ⟨ρα⟩⟨vα⟩f ⊗ ⟨vα⟩f (A.11)

⟨Pα⟩ = ⟨ρα⟩RT (A.12)

⟨Dα⟩ =
1

ε

N∑
β=1

⟨Pα⟩⟨Pβ⟩D̂αβ(⟨vβ⟩f − ⟨vα⟩f ) (A.13)
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Appendix B

Proofs

B.1 Tensors

If the reader has difficulties understanding the validity of any of the intermediate steps in the

following proofs, then it is highly recommended to read Chapter 1 of Continuum Mechanics:

Concise Theory and Problems [140]. As all of the following proofs can be derived from that

chapter.

If Â is an arbitrary tensor and u is an arbitrary vector, then:

∇ · (Âu) = u · ∇ · Â+ tr(Â∇u) (B.1)

Proof. Begin by expanding the LHS as follows:

∇ · (Âu) = ∇ · ((Aijei ⊗ ej)(ukek))

= ∇ · (Aij(ukek · ej)ei)

= ∇ · (Aijukδkjei)

= ∇ · (Aijujei)

=
∂

∂xi
(Aijuj)

= uj
∂Aij

∂xi
+ Aij

∂uj
∂xi

(B.2)

Consider the RHS now, and expanding the first term as follows:

u · ∇ · Â = ukek ·
∂Tij
∂xi

ej

= uk
∂Tij
∂xi

ek · ej

= uk
∂Tij
∂xi

δkj

= uj
∂Tij
∂xi

(B.3)
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Now expand the second term of the RHS as follows:

tr(Â∇u) = tr

[
Aijei ⊗ ej

(
∂uk
∂xq

ek ⊗ eq
)]

= tr

[
Aij

∂uj
∂xq

ei ⊗ eq
]

= Aij
∂uj
∂xq

tr [ei ⊗ eq]

= Aij
∂uj
∂xq

ei ⊗ eq

= Aij
∂uj
∂xq

δiq

= Aij
∂uj
∂xi

(B.4)

Combining equations (B.3) and (B.4), this results in the RHS of the equation being:

u · ∇ · Â+ tr(Â∇u) = uj
∂Aij

∂xi
+ Aij

∂uj
∂xi

(B.5)

Thus, it can clearly be seen that equations (B.2) and (B.5) are the same, and so the identity

in equation (B.1) must be true.

If Âs is an arbitrary symmetric tensor and u is an arbitrary vector, then:

∇ · (Âsu) = u · ∇ · Âs +∇u : Âs (B.6)

Proof. The following properties of traces and tensors are required:

tr(ÂB̂) = tr(B̂Â) (B.7)

Â : B̂ = tr(ÂT B̂) = tr(ÂB̂T ) (B.8)

Assuming that the arbitrary tensor in equation (B.1) is symmetric, i.e. Â = Âs, then

equation (B.7) and (B.8) can be applied as follows:

∇ · (Âsu) = u · ∇ · Âs + tr((∇u)Âs)

∇ · (Âsu) = u · ∇ · Âs +∇u : ÂT
s (B.9)

However, since Âs is symmetric this means that Âs = Â
T
s . So equation (B.9) becomes:

∇ · (Âsu) = u · ∇ · Âs +∇u : Âs (B.10)

Equation (B.10) is the same as equation (B.6), thus the identity is true.

126



Appendix C

Sample Calculations

C.1 Relating Air-to-Fuel Ratio, Current Density, and

Inlet Velocity

The along the channel geometry specified is:

h = 0.1 cm (C.1)

L = 2.1 cm (C.2)

where h is the height of the channel, and L is the length of the active area of the PEFC.

Due to fact that the PEFC is being represented in 2D space, the width into the page will be

treated as 1 cm. This results in the following areas and volumes for the geometry:

Ain = wh = 0.1 cm2 (C.3)

Aact = wL = 2.1 cm2 (C.4)

Qair = vavgAin = 0.1vavg cm3 s−1 (C.5)

where Ain is the area of the inlet (cm2), Aact is the active area of the CL (cm2), w is the width

into the page (1 cm), Qair is the flow rate of air entering the channel (cm3 s−1), and vavg is

the average velocity at the inlet of the channel (cm/s). The air entering is at a temperature

and pressure of 80 ◦C and 101 325Pa, with a relative humidity of 50%. In dry air, it is

considered that the molar fraction of oxygen is 0.21. This gives the following equations for

molar fractions of the humid air:

xO2 = 0.21(1− xH2O) (C.6)

xH2O =
PsatRH

Ptot

(C.7)

(C.8)
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where xO2 and xH2O are the molar fractions of oxygen and water vapour in the humid air,

Psat is the saturated pressure (47 370Pa [141]), RH is the relative humidity (0.5), and Ptot

is the total pressure (101 325Pa). using the above numbers this gives an oxygen and water

vapour molar fraction of approximately 0.161 and 0.234 respectively. The molar mass of the

humid air, Mhumid, is:

Mhumid = (1− xH2O)Mdry + xH2OMH2O (C.9)

= (1− 0.234)28.97× 10−3 + 0.234(18.02× 10−3) (C.10)

= 26.4× 10−3 kgmol−1 (C.11)

where Mdry is the molar mass of dry air (28.97× 10−3 kgmol−1), and MH2O is the molar

mass of water vapour (18.02× 10−3 kgmol−1). Now the density of humid air, ρhumid, are can

now be calculated as follows:

ρhumid =
PtotMhumid

RT
(C.12)

=
101325(26.4× 10−3)

8.314(353.15)
(C.13)

= 0.911 kgm−3 (C.14)

= 9.11× 10−4 g cm−3 (C.15)

where R is the ideal gas constant (8.314 JK−1mol−1), T is the temperature (353.15K).

Finally, the current density, air-to-fuel ratio, and velocity can be related as follows:

Qairρhumid

Mhumid

=
1

xO2

(
jAact

4F

)
λstoic ← Qair = vavgAin (C.16)

vavg =
Mhumid

xO2Ainρhumid

(
jAact

4F

)
λstoic (C.17)

where j is the current density (A cm−2), F is Faraday’s constant (96 485Cmol−1), and λstoic

is the oxygen to stoichiometric ratio. For the case when λstoic = 1 and the current density is

1.0Am−2 then the average velocity at the inlet is:

vavg =
26.4

0.161(0.1)9.11× 10−4

(
1.0(2.1)

4(96485)

)
(C.18)

vavg = 9.80 cm s−1. (C.19)
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